题名

含有服務水準之流行性商品的存貨模型

并列篇名

The Inventory Models of Fashion Products with Service Level

DOI

10.30136/ZXYGLKX.201006.0005

作者

林玉彬;陳彥智

关键词

服務水準 ; 流行性商品 ; 羅吉斯分配 ; service level ; fashion products ; logistic distribution

期刊名称

資訊與管理科學

卷期/出版年月

3卷1期(2010 / 06 / 30)

页次

82 - 95

内容语文

繁體中文

中文摘要

存貨管理的目的,在於如何用最低的存貨成本來滿足顧客對產品的需求,而存貨決策乃是在決定每次訂購或生產貨品的數量及時間,使能達成存貨管理的目的。然而存貨服務水準和存貨總成本之間亦有著取捨關係。現今,顧客服務的滿足是企業間重要的競爭策略,所以實務上業者追求著是服務水準和成本間的平衡點。 本研究主要是探討流行性商品,其需求量服從羅吉斯分配的前提下,考慮可控制的前置時間內,允許缺貨且缺貨發生時考慮部分欠撥、部分銷售損失與生產過程不完備混合的存貨系統,且再加入服務水準的限制式。提出一個以訂購數量(Q)、請購點®、設置成本(A)、品質水準(θ)和前置時間(L)等的決策變數之存貨模型,並以數值模擬方法推算出服務水準和全年期望總成本之間的關係。

英文摘要

The object of the inventory management is to satisfy the customer demand with minimum inventory cost and the inventory policy is how to decide the quantity or timing of every order times, that can reach the object of the inventory management. However there is a closely-related relationship between inventory service level and the total inventory cost. Now, the services of all customers be satisfied is important competitive policy during business. All operators of the business practice are seeking for the balance point between service level and cost. The research analyzes the inventory model for the logistic demand. In the controllable lead time, the shortages are allowed and the total amount of stockout during the stockout period is considered to be a mixture of backorders and lost sales, then put in the subject of service level. We propose the inventory model of decision variables that includes order quantity、reorder point、setup cost、quality level、lead time and service level etc. Then we utilize the numerical simulation examples to illustrate the relation between total cost and service level.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. 林玉彬、蔡美賢、林建廷(2006)。含有設置成本之流行商品的存貨模型。文大商管學報,11(2),21-32。
    連結:
  2. Anjos, M. F.,Cheng, R. C. H.,Currie, C. S. M.(2005).Optimal pricing policies for perishable products.European Journal of Operational Research,166(1),246-254.
  3. Azoury,K.S.,Brill,P.H.(1994).Analysis of Net Inventory in Continuous Reviw Models with Random Lead Time.European Journal of Operational Research,59,382-392.
  4. Ben-Daya, M.,Raouf, A.(1994).Inventory Models Involving Lead Time as Decision Variable.Journal of the Operational Research Society,45(5),579-582.
  5. Chiu,H.N.(1995).An approximation to the Continuous Review Inventory Model with Perishable Items and Lead Times.European Journal of Operational Research,87,93-108.
  6. Foote, B.,Kebriaei, N.,Kumin, H.(1988).Heuristic Policies for Inventory Ordering Problems with Long and Randomly varying Lead Times.Journal of Operations Management,7,115-124.
  7. Gallego, G.,Moon, I.(1993).The Distribution Free Newsboy Problem:Review and Extensions.Journal of the Operational Research Society,44(8),825-834.
  8. Hong, J. D.,Hayya, J. C.(1995).Joint Investment in Quality Improvement and Setup Reduction.Computers and Operations Research,22(6),567-574.
  9. Jun Shao.(1999).Mathematical Statistics.New York:Springer-Verlag.
  10. Kim, D. H.,Park, K. S.(1985).Inventory Model with a Mixture of Lost Sales and Time-Weighted Backorders.Journal of the Operational Research Society,36,231-238.
  11. Liao, C. J.,Shyu, C. H.(1991).An Analytical Determination of Lead Time with Normal Demand.International Journal of Operations and Production Management,11(9),72-78.
  12. Liberatore, M.(1977).Planning Horizons for a Stochastic Lesd Time Model.Operations Research,25,977-988.
  13. Magson, D.(1979).Stock Control When the Lead Time cannot be Considered Constant.Journal of the Operational Research Society,30,317-322.
  14. Moon, I.(1994).Multiproduct Economic Lot Size Models with Investments Costs for Setup Reduction and Quality Improvement: Review and Extensions.International Journal of Production Research,32(12),2795-2801.
  15. Moon, I.,Choi, S.(1994).The Distribution Free Continuous Review Inventory System with a Service Level Constraint.Computers and Industrial Engineering,27(1-4),209-212.
  16. Moon, I.,Choi, S.(1998).A Note on Lead Time and Distributional Assumptions in Continuous Review Inventory Models.Computers and Operations Research,25(11),1007-1012.
  17. Naddor, E.(1996).Inventory Systems.New York:John Wiley.
  18. Ouyang, L. Y.,Wu, K. S.(1998).A Minimax Distribution Free Procedure for Mixed Inventory Model Involving Variable Lead Time.International Journal of Production Economics,56-57,511-516.
  19. Ouyang, L. Y.,Wu, K. S.(1997).Mixture Inventory Model Involving Variable Lead Time with a Service Level Constraint.Computers and Operations Research,24(9),875-882.
  20. Ouyang, L. Y.,Yeh, N. C.,Wu, K. S.(1996).Mixture Inventory Model with Backorders and Lost Sales for Variable Lead Time.Journal of the Operational Research Society,47(6),829-832.
  21. Porteus, E. L.(1986).Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction.Operations Research,34(1),137-144.
  22. Porteus, E. L.(1986).Investing in New Parameter Values in the Discounted EOQ Model.Naval Research Logistics Quarterly,33(1),39-48.
  23. Porteus, E. L.(1985).Investing in Reduced Setups in the EOQ Model.Management Sciences,31(8),998-1010.
  24. Silver, E. A.,Peterson, R.(1985).Decision Systems for Inventory Management and Production Planning.New York:John Wiley.
  25. Tersine, R. J.(1982).Principles of Inventory and Materials Management.New York:North Holland.
  26. Tersine, R. J.(1994).Principles of Inventory and Materials Management.New Jersey:Prentice-Hall.
  27. 林君諺(2000)。台灣大學工業管理系。
  28. 林鴻志(2002)。淡江大學管理科學系。
  29. 張宏吉(2000)。淡江大學管理科學系。
  30. 許丕誠(2002)。中山大學資訊管理學系研究所。
  31. 陳世昌(2007)。真理大學數理科學研究所碩士。
  32. 詹宗泰(2001)。中央大學工業管理研究所。
  33. 蔡慧瑩(2000)。淡江大學統計學系研究所。
  34. 羅美惠(2004)。真理大學數理科學研究所。