题名

一個運用海量資料分析企業競爭力的方式

作者

連志誠

关键词

海量資料 ; 企業競爭力 ; 雲端服務 ; Big data ; core competitiveness of enterprise ; cloud services

期刊名称

電腦稽核

卷期/出版年月

31期(2015 / 01 / 30)

页次

9 - 20

内容语文

繁體中文

中文摘要

透過適當地管理和分析海量資料,企業可以發現和創造改善業務智慧的新機會,以增進企業的競爭力。管理並分析海量資料的作為已經變成一種新形式的差異化競爭,這些作為是否成功取決於企業是否有能力採用新的技術,使用或開發海量資料應用系統,改善營運與決策的品質與效率。本文對於企業如何運用海量資料追求他們的競爭力,提出一些策略的建議和實現的考量,首先,討論使用應用系統分析競爭力指標時,挑選指標的優先順序,減少海量資料屬性限制應用系統的影響,提升分析指標的成功機會。同時,提出一個即時監控機制分析競爭力指標的架構,並說明這個機制是可行的。這個機制可以即時地啟動,掌控海量資料的變化,分析有興趣的指標集合。企業可以使用這些分析結果改善競爭力。

英文摘要

Enterprises could increase their core competitiveness by discovering and creating new business intelligence and opportunities through from the management and analysis of big data which may be collected by themselves or other sites. Managing and analyzing big data have been a new force, for enterprises, to prompt the differential competence benefits to other companies in the industry. The success of the usage of big data generally depends upon the ability to apply new techniques and equipment in the process of managing and analyzing big data. In this study, we first discuss the process of selecting the kernel of competitiveness indices in order to fit the load constraints of resources while these indices are analyzed with big data. Then, a monitoring and control mechanism was proposed to monitor the process of analyzing indices. We explained that the proposed approach can monitor or analyze the related data to get results on the real-time requests. Therefore, enterprises can use the proposed approach to get results in real time, and prompt their core competitiveness with the analytic information of Indices.

主题分类 基礎與應用科學 > 資訊科學
参考文献
  1. 連志誠、劉韋辰、陳琮文(2013)。一個偵測個人資料洩漏的雲端服務建置。電腦稽核期刊,27,102-111。
    連結:
  2. Wikipedia. Porter five forces analysis, 2014.
  3. Amer-Yahia, Sihem,Doan, AnHai,Kleinberg, Jon,Koudas, Nick,Franklin, Michael(2010).Crowds, clouds, and algorithms: Exploring the human side of big data applications.Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD,New York, NY, USA:
  4. Ayankoya, Kayode,Calitz, Andre,Greyling, Jean(2014).Intrinsic relations between data science, big data, business analytics and datafication.Proceedings of the Southern African Institute for Computer Scientist and Information Technologists Annual Conference 2014 on SAICSIT 2014 Empowered by Technology, SAICSIT,New York, NY, USA:
  5. Boyd, Danah,Crawford, Kate(2012).Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon.Information, Communication & Society,15(5),662-679.
  6. Bu, Yingyi,Borkar, Vinayak,Xu, Guoqing,Carey, Michael J.(2013).A bloat-aware design for big data applications.SIGPLAN Not.,48(11),119-130.
  7. Bughin, Jacques,Chui, Michael,Manyika, James(2010).Clouds, big data, and smart assets: Tentech-enabled business trends to watch.McKinsey Quarterly,56(1),75-86.
  8. Chen, Hsinchun,Chiang, Roger HL,Storey, Veda C(2012).Business intelligence and analytics: From big data to big impact.MIS quarterly,36(4),1165-1188.
  9. Cohen, Jeffrey,Dolan, Brian,Dunlap, Mark,Hellerstein, Joseph M,Welton, Caleb(2009).Mad skills: new analysis practices for big data.Proceedings of the VLDB Endowment,2(2),1481-1492.
  10. Crawford, Kate(2011).Six provocations for big data.A Decade in Internet Time: Symposium on the Dynamics of the Internet and Society
  11. Dhiman, Karan,Quach, Benson(2012).Google's go and dart: Parallelism and structured web development for better analytics and applications.Proceedings of the 2012 Conference of the Center for Advanced Studies on Collaborative Research, CASCON'12,Riverton, NJ, USA:
  12. Fan, Wei,Bifet, Albert(2013).Mining big data: Current status, and forecast to the future.SIGKDD Explor. Newsl.,14(2),1-5.
  13. Feldman, Dan,Schmidt, Melanie,Sohler, Christian(2013).Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering.Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA'13
  14. Ghazal, Ahmad,Rabl, Tilmann,Hu, Minqing,Raab, Francois,Poess, Meikel,Crolotte, Alain,Jacobsen, Hans- Arno(2013).Bigbench: Towards an industry standard benchmark for big data analytics.Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD'13,New York, NY, USA:
  15. Herodotou, Herodotos,Lim, Harold,Luo, Gang,Borisov, Nedyalko,Dong, Liang,Cetin, Fatma Bilgen,Babu, Shivnath(2011).Starfish: A selftuning system for big data analytics.CIDR, volume 11
  16. Howe, Doug,Costanzo, Maria,Fey, Petra,Gojobori, Takashi,Hannick, Linda,Hide, Winston,Hill, David P,Kania, Renate,Schaeffer, Mary,St Pierre, Susan(2008).Big data: The future of biocuration.Nature,455(7209),47-50.
  17. Jacobs, Adam(2009).The pathologies of big data.Communications of the ACM,52(8),36-44.
  18. Kim, Gang-Hoon,Trimi, Silvana,Chung, Ji-Hyong(2014).Big-data applications in the government sector.Commun. ACM,57(3),78-85.
  19. LaValle, Steve,Lesser, Eric,Shockley, Rebecca,Hopkins, Michael S,Kruschwitz, Nina(2013).Big data, analytics and the path from insights to value.MIT Sloan Management Review,21
  20. Manyika, James,Chui, Michael,Brown, Brad,Bughin, Jacques,Dobbs, Richard,Roxburgh, Charles,Byers, Angela H(2011).Big data: The next frontier for innovation, competition, and productivity.
  21. Rabl, Tilmann,Gómez-Villamor, Sergio,Sadoghi, Mohammad,Muntés-Mulero, Victor,Jacobsen, Hans-Arno,Mankovskii, Serge(2012).Solving big data challenges for enterprise application performance management.Proc. VLDB Endow.,5(12),1724-1735.
  22. Suthaharan, Shan(2014).Big data classification: Problems and challenges in network intrusion prediction with machine learning.SIGMETRICS Perform. Eval. Rev.,41(4),70-73.
  23. Szymczak, Samantha,Zelik, Daniel J.,Elm, Wiliam(2014).Support for big data's limiting resource: Human attention.Proceedings of the 2014 Workshop on Human Centered Big Data Research, HCBDR'14,New York, NY, USA:
  24. Villanustre, Flavio G.(2014).Big data trends and evolution: A human perspective.Proceedings of the 3rd Annual Conference on Research in Information Technology, RIIT' 14,New York, NY, USA:
  25. Waldrop, Mitch(2008).Big data: wikiomics.Nature,455(7209),22.
  26. Zikopoulos, Paul,Eaton, Chris(2011).Understanding big data: Analytics for enterprise class hadoop and streaming data.McGraw-Hill Osborne Media.
  27. Zilora, Stephen J.,Bogaard, Daniel S.,Leone, Jim(2013).The changing face of information technology.Proceedings of the 14th Annual ACM SIGITE Conference on Information Technology Education, SIGITE'13,New York, NY, USA:
  28. Zimmermann, Alfred,Sandkuhl, Kurt,Pretz, Michael,Falkenthal, Michael,Jugel, Dierk,Wissotzki, Matthias(2013).Towards an integrated serviceoriented reference enterprise architecture.Proceedings of the 2013 International Workshop on Ecosystem Architectures, WEA 2013,New York, NY, USA:
被引用次数
  1. 顏禎妤、楊馥如、張曉楨(2017)。大數據應用對顧客關係管理與整合行銷之影響。績效與策略研究,14(1),69-94。