题名

結合自助式商業智慧技術之敏捷資料分析方法-以公部門為例

并列篇名

An Agile Data Analytics Method Combining Self - Service Business Intelligence -An Example of the Public Sector

作者

林雨萱;孫嘉明

关键词

自助式商業智慧系統 ; 敏捷分析 ; 視覺化分析 ; Self-service business intelligence ; Agile analysis ; Visual analytics

期刊名称

電腦稽核

卷期/出版年月

37期(2018 / 01 / 31)

页次

45 - 65

内容语文

繁體中文

中文摘要

大數據時代的來臨,導致商業智慧系統再次為大眾所重視,而增強圖形化互動分析的自助式商業智慧系統補足了原有商業智慧系統的不足之處,讓使用者更輕易地自行進行資料分析。然而一般使用者如何和資訊人員合作因應不同的分析目的快速敏捷擷取不同來源的資料,進行整合分析與設計?不同於之前的商業智慧系統開發方法,本研究將敏捷分析做為開發方法建構之參考框架,以快速滿足使用者端需求,並且簡化傳統建置商業智慧系統時需要優先規劃資料倉儲的困擾。本文所提出的敏捷自助式商業智慧系統開發方法包含以下特性:(1)可適用於快速導入自助式商業智慧系統;(2)應用資料庫反向工程方法縮短分析時程;(3)可有效減輕資 訊人員負擔;(4)利用故事情境法釐清不同使用者角色定義與需求;(5)使用衝刺計畫與待辦清單有效控管與追蹤開發進度。

英文摘要

In the era of big data, leading to widespread use of business intelligence systems. Self-service business intelligence system that is enhanced by the function of visualization to overcome the business intelligence system deficiencies, allows users to easily analysis data by themselves. For the challenges of the rapid changes in business environments and system requirements, how do users collaborate with IT staff to develop the self-service business intelligence system to quickly adapt with diverse data from different sources? Traditionally building a business intelligence system requires to implement a data warehouse to integrate different sources of data; in this study, we combine agile development methods to quickly satisfy the different requirements of multiple users, and reduce the efforts of building data warehouses. The development method proposed in this study combine with some techniques to get those benefits:(1)fitting for the quick adoption of self-service business intelligence systems;(2)applying database reverse engineering methods to shorten time for system analysis;(3)efficiently reducing the burden of IT staff;(4)using story telling methods to clarify system requirements of different user roles;(5)using sprint and product backlogs to effectively control and trace the schedule of projects.

主题分类 基礎與應用科學 > 資訊科學
参考文献
  1. Business Application Research Center. ( 2016) The BI Survey 16: Operational BI Continues Its Rise in 2016. Retrieved November 10, 2016, from http://barc-research.com/tag/bi/
  2. Chen, H.,Chiang, R. H.,Storey, V. C.(2012).Business intelligence and analytics: From big data to big impact.MIS quarterly,36(4)
  3. Collier, K.(2012).Agile analytics: A value-driven approach to business intelligence and data warehousing.Addison-Wesley.
  4. Kimball, R.(1997).A dimensional modeling manifesto.DBMS,10(9),58-70.
  5. Kimball, R.(1998).The data warehouse lifecycle toolkit: expert methods for designing, developing, and deploying data warehouses.Canada:John Wiley & Sons.
  6. Layton, M. C.(2012).Agile project management for dummies.John Wiley & Sons.
  7. Martin, R. C.(2002).Agile software development: principles, patterns, and practices.Prentice Hall.
  8. Stein, B.,Morrison, A.(2014).The enterprise data lake: Better integration and deeper analytics.PwC Technology Forecast: Rethinking integration,1,1-9.
  9. Verplank, B.,Fulton, J.,Black, A.,Moggridge, B.(1993).Observation and invention: Use of scenarios in interaction design.Tutorial at INTERCHI' 93,Amsterdam:
  10. 資料科學實驗室Wu Jerry ( 2014)。什麼是大數據的新架構『資料湖泊』?。2014 年10 月。取自:http://dataology.blogspot. com/ 2014/ 10/blog-post.html
  11. 林宜隆、孫嘉明、邱靜宜(2015)。行政院主計總處委託研究行政院主計總處委託研究,台灣:行政院主計總處。
  12. 林信成( 2012)。資料模式。2012年10月。取自國家教育研究院圖書館學與資訊科學大辭典:http://terms.naer.edu.tw/detail/ 1679034/
  13. 盛銳、韵湘(2006)。基於Power Designer 的數據庫設計與實現。電腦應用技術,2,1-5。
  14. 韓明文(2009)。圖表+。台灣:碁峰資訊股份有限公司。