题名

基於RFM分析法之顧客適性化產品推薦機制

并列篇名

A Timely Adaptive Product Recommendation System Based on RFM

作者

李麗華(Li-Hua Li);鄭婕妤(Chieh-Yu Cheng);李富民(Fu-Ming Lee);廖姶涵(I-Han Liao)

关键词

RFM分析法 ; 適性化 ; 自組織映射圖網路 ; 推薦系統 ; RFM ; Adaptive ; Self-organizing Map (SOM) ; Recommendation Systems (RS)

期刊名称

商略學報

卷期/出版年月

4卷2期(2012 / 06 / 01)

页次

135 - 151

内容语文

繁體中文

中文摘要

為了解顧客喜好並滿足其需求,企業須經常仰賴推薦系統來提供符合顧客個人化之產品或服務。過去有關個人化產品推薦研究中,以運用RFM方法及顧客的購買時間做為預測推薦基礎的研究有適時性推薦(Timely Recommendation),但是當產品遇到購買週期的天數重覆時,系統仍會予以推薦,因此這類重覆推薦將降低推薦的成效。爾後亦有研究運用產品週期性推薦,這主要是利用產品被購買的最小與最大天數區間作為推薦顧客產品之依據。不過上述這些研究均以高忠誠度即購買頻率高的顧客為主要對象,忽略低忠誠度顧客對產品可能有興趣但卻未購買的潛在偏好之重要性。有鑑於此,本研究同時考慮產品購買週期與顧客消費特性,提出一套基於RFM分析法之顧客適性化產品推薦機制。由實驗結果顯示本研究之推薦機制能提供更有效益的產品推薦。

英文摘要

In order to understand customer preferences and satisfy their needs, the enterprises usually rely on recommendation system (RS) to provide personalized products or service. In the past, a type of recommendation, called timely recommendation was proposed, which combined the RFM analysis and the purchased time into RS. However, this approach did not take the purchase periodicity into account. In this case, it will produce redundant recommendation and, hence, could decrease the recommendation performance. Another method of products recommendation is the product periodicity recommendation (PPR). This method takes the minimum and the maximum days of product being purchased as a basis for recommendation. However these studies ignored the importance of the potential preferences of low-loyalty customers. For this reason, this study proposes an adaptive product recommendation system (APRS) based on RFM Method. The proposed method considers both the product purchased periodicity and the characteristics of customer consumption period. The results of this research show that the proposed recommendation mechanism of this study can provide more effective product recommendation.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
社會科學 > 管理學
参考文献
  1. Albadvi, A.,Shahbazi, M.(2010).Integrating Rating-based Collaborative Filtering with Customer Lifetime Value: New Product Recommendation Technique.Intelligent Data Analysis,14(1),143-155.
  2. Goldberg, D.,Nichols, D.,Oki, B. M.,Terry, D.(1992).Using Collaborative Filtering to Weave an Information Tapestry.Communications of The ACM,35(12),61-70.
  3. Ha, S. H.(2007).Applying Knowledge Engineering Techniques to Customer Analysis in the Service Industry.Advanced Engineering Informatics,21(3),293-301.
  4. Hughes, A. M.(1994).Strategic Database Marketing.Berlin:McGraw-Hill.
  5. Kim, J. K.,Cho, Y. H.,Kim, W. J.,Kim, J. R.,Suh, J. H.(2002).A Personalized Recommendation Procedure for Internet Shopping Support.Electronic Commerce Research and Applications,1(3-4),301-313.
  6. Kohonen, T.(1995).Self-organizing Map.Berlin:Springer.
  7. Lee, S. K.,Cho, Y. H.,Kim, L. H.(2010).Collaborative Filtering with Ordinal Scale based Implicit Ratings for Mobile Music Recommendations.Information Sciences,180(11),2142-2155.
  8. Li, L. H.,Hsu, R. W.,Hung, S. S.,Tsai, P. J.(2009).The Personalized Recommendation with Bundling Strategy Based on Product Consuming Period.Proceedings of the 9th International Conference on Computational and Information Science (CIS' 09)
  9. Li, L. H.,Lee, F. M.,Liu, W. J.(2006).The Timely Product Recommendation Based on RFM Method.Proceedings of International Conference on Business and Information,Singapore:
  10. Liu, D. R.,Shih, Y. Y.(2005).Hybrid Approaches to Product Recommendation Based on Customer Lifetime Value and Purchase Preferences.Journal of Systems and Software,77(2),181-191.
  11. Liu, D. R.,Shih, Y. Y.(2005).Integrating AHP and Data Mining for Product Recommendation Based on Customer Lifetime Value.Information and Management,42(3),387-400.
  12. Min, S. H.,Han, I.(2005).Detection of the Customer Time-variant Pattern for Improving Recommender Systems.Expert Systems with Applications,28(2),189-199.
  13. Oard, D. W.,Marchionini, G.(1996).Technical ReportTechnical Report,Department of Computer Science, University of Maryland.
  14. Sarwar, B.,Karypis, G.,Konstan, J.,Riedl, J.(2000).Analysis of Recommendation Algorithms for e-Commerce.Proceedings of The 2nd ACM Conference on Electronic Commerce
  15. Schafer, J. B.,Konstan, J.,Riedl, J.(1999).Recommendation System in e-Commerce.Proceedings of The First ACM Conference on Electronic Commerce
  16. Suh, E. H.,Noh, K. C.,Suh, C. K.(1999).Customer List Segmentation Using Thecombined Response Model.Expert Systems with Applications,17(2),89-97.
  17. Yuan, S. T.,Tsao, Y. W.(2003).A Recommendation Mechanism for Contextualized Mobile Advertising.Expert Systems with Applications,24(4),399-414.
  18. 葉怡成(2003)。類神經網路模式應用與實作。台北:儒林圖書公司。
被引用次数
  1. 游志青、王子駿(2013)。大學戲劇通識課程對非藝術科系大學生戲劇知識、涉入程度與觀賞行為之影響。藝術教育研究,25,37-71。