题名

應用資料探勘技術建構顧客流失預測模型

并列篇名

Applying Data Mining Techniques to Construct Customer Churn Prediction Model

DOI

10.3966/207321472021091303001

作者

林金賢(Chin-Shien Lin);謝欣樺(Hsin-Hua Hsieh)

关键词

資料探勘 ; 顧客關係管理 ; 顧客流失 ; 決策樹 ; 羅吉斯迴歸 ; Data Mining ; Customer Relationship Management ; Customer Churn ; Decision Tree ; Logistic Regression

期刊名称

商略學報

卷期/出版年月

13卷3期(2021 / 09 / 01)

页次

159 - 176

内容语文

繁體中文

中文摘要

隨著ICT技術的進步,利用資料探勘技術從大量數據中挖掘所隱藏的知識對企業越趨重要,尤其在顧客關係管理中的流失顧客預測。雖然決策樹的易讀性以及羅吉斯迴歸捕捉變數間函數關係的優勢使得這兩種方法在流失預測的文獻中常被使用,然而結合此兩種方法優點的羅吉斯葉在流失預測中的適用性並沒有太多的討論。本研究鑒於決策樹的預測結果可視為是一種監督式的分群結果,再輔以羅吉斯迴歸來捕捉每一群中客戶流失的原因,非常契合精準行銷的先分群再建模的概念,因此主張以羅吉斯葉來建構流失預測模型。實證結果顯示羅吉斯葉確實有較好的檢定力與較低的錯誤歸類成本,而決策樹規則與羅吉斯迴歸的顯著變數也都可以提供管理者重要的管理意涵。

英文摘要

With the advancement of ICT technology, how to use Data mining techniques to discover the potential knowledge from big data is becoming more and more important for enterprises, especially for the churn prediction in the field of customer relationship management (CRM). Although the easy to read rules of Decision Trees and the advantages of Logistic regression in capturing the functional relationships among variables had made these two algorithms widely used in the literature on churn prediction, the applicability of Logit Leaf Model combining the benefit of these two algorithms had not yet been discussed too much. In view of the fact that the prediction result of the Decision Tree at the first stage can be regarded as a supervised clustering result, and it can further be supplemented by Logistic regression to find the causes of customer churn in each cluster at the second stage, which fits the concept of precision marketing, this study advocates using Logit Leaf Model to construct customer churn prediction models. The empirical results showed that Logit Leaf Model had the higher power and the lower misclassification costs among the algorithms, and the rules of the Decision Tree and the significant variables of Logistic regression can also provide decision makers important managerial implications.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
社會科學 > 管理學
参考文献
  1. 齊德彰,洪敘峰(2011)。供應商評估模式建構之新概念-SEM 與 RST 之結合。資訊管理學報,18(2),17-42。
    連結:
  2. Ahmed, S. R.(2004).Applications of Data Mining in Retail Business.Proceedings of International Conference on Information Technology: Coding and Computing,Las Vegas, NV, USA:
  3. Alamsyah, A.,Salma, N.(2018).A Comparative Study of Employee Churn Prediction Model.2018 4th International Conference on Science and Technology (ICST),1,1-4.
  4. Amin, A.,Al-Obeidat, F.,Shah, B.,Adnan, A.,Loo, J.,Anwar, S.(2019).Customer Churn Prediction in Telecommunication Industry Using Data Certainty.Journal of Business Research,94,290-301.
  5. Barfar, A.,Padmanabhan, B.,Hevner, A.(2017).Applying Behavioral Economics in Predictive Analytics for B2B Churn: Findings from Service Quality Data.Decision Support Systems,101,115-127.
  6. Bose, I.,Chen, X.(2009).Quantitative Models for Direct Marketing: A Review from Systems Perspective.European Journal of Operational Research,195(1),1-16.
  7. Bounsaythip, C.,Rinta-Runsala, E.(2001).Overview of Data Mining for Customer Behavior Modeling.VTT Information Technology Research Report,1,1-53.
  8. Brown, B. P.,Zablah, A. R.,Bellenger, D. N.,Donthu, N.(2012).What Factors Influence Buying Center Brand Sensitivity?.Industrial Marketing Management,41(3),508-520.
  9. Choi, T. Y.,Hartley, J. L.(1996).An exploration of supplier selection practices across the supply chain.Journal of Operations Management,14(4),333-343.
  10. Coussement, K.,Lessmann, S.,Verstraeten, G.(2017).A Comparative Analysis of Data Preparation Algorithms for Customer Churn Prediction: A Case Study in the Telecommunication Industry.Decision Support Systems,95,27-36.
  11. Datta, S.,Das, S.(2015).Near-Bayesian Support Vector Machines for Imbalanced Data Classification with Equal or Unequal Misclassification Costs.Neural Networks,70(2015),39-52.
  12. De Caigny, A.,Coussement, K.,De Bock, K. W.(2018).A New Hybrid Classification Algorithm for Customer Churn Prediction Based on Logistic Regression and Decision Trees.European Journal of Operational Research,269(2),760-772.
  13. Dickson, G. W.(1966).An Analysis of Vendor Selection Systems and Decisions.Journal of Purchasing,2(1),5-17.
  14. Figalist, I.,Elsner, C.,Bosch, J.,Olsson, H. H.(2019).Customer Churn Prediction in B2B Contexts.The International Conference on Software Business,Jyväskylä, Finland:
  15. Fitzsimmons, J. A.,Fitzsimmons, M. J.(2000).Service Management: Operations Strategy and Information.New York:Mc Graw-Hill.
  16. Giraud-Carrier, C.,Povel, O.(2003).Characterising Data Mining Software.Intelligent Data Analysis,7(3),181-192.
  17. Gordini, N.,Veglio, V.(2017).Customers Churn Prediction and Marketing Retention Strategies. An Application of Support Vector Machines Based on the Auc Parameter-selection Technique in B2B E-commerce Industry.Industrial Marketing Management,62,100-107.
  18. Gustafsson, A.,Johnson, M. D.,Roos, I.(2005).The Effects of Customer Satisfaction, Relationship Commitment Dimensions, and Triggers on Customer Retention.Journal of Marketing,69(4),210-218.
  19. Hallowell, R.(1996).The Relationships of Customer Satisfaction, Customer Loyalty, and Profitability: An Empirical Study.International Journal of Service Industry Management,7(4),27-42.
  20. Hansen, H.,Samuelsen, B. M.,Sallis, J. E.(2013).The Moderating Effects of Need for Cognition on Drivers of Customer Loyalty.European Journal of Marketing,47(8),1157-1176.
  21. Heeringa, S.,Weat, B.,Berglund, P.(2010).Applied Survey Data Analysis.Boca Raton, FL:Chapman & Hall/CRC.
  22. Hsu, C. C.,Kannan, V. R.,Keong Leong, G.,Tan, K. C.(2006).Supplier Selection Construct: Instrument Development and Validation.The International Journal of Logistics Management,17(2),213-239.
  23. Jahromi, A. T.,Stakhovych, S.,Ewing, M.(2014).Managing B2B Customer Churn, Retention and Profitability.Industrial Marketing Management,43(7),1258-1268.
  24. Kaya, E.,Dong, X.,Suhara, Y.,Balcisoy, S.,Bozkaya, B.,Pentland, A. S.(2018).Behavioral Attributes and Financial Churn Prediction.EPJ Data Science,7(1),1-18.
  25. Koh, H. C.,Gerry, C. K. L.(2002).Data Mining And Customer Relationship Marketing In The Banking Industry.Singapore Management Review,24(2),1-27.
  26. Lam, S. Y.,Shankar, V.,Erramilli, M. K.,Murthy, B.(2004).Customer Value, Satisfaction, Loyalty, and Switching Costs: An Illustration from a Business-to-Business Service Context.Journal of the Academy of Marketing Science,32(3),293-311.
  27. Maestrini, V.,Luzzini, D.,Caniato, F.,Ronchi, S.(2018).Effects of Monitoring and Incentives on Supplier Performance: An Agency Theory Perspective.International Journal of Production Economics,203,322-332.
  28. McCann, P.,Fingleton, B.(1996).The Regional Agglomeration Impacat of Just-I-Time Input Linlages: Evidence from the Scottish Electonics Industry.Scottish Journal of Political Economy,43(5),493-518.
  29. Miguéis, V. L.,Van den Poel, D.,Camanho, A. S.,Falcão e Cunha, J.(2012).Modeling Partial Customer Churn: On the Value of First Product-category Purchase Sequences.Expert Systems with Applications,39(12),11250-11256.
  30. Mitrovic, S.,Singh, G.,Baesens, B.,Lemahieu, W.,De Weerdt, J.(2017).Scalable RFM-enriched Representation Learning for Churn Prediction.Proceedings of 2017 International Conference on Data Science and Advanced Analytics,Tokyo, Japan:
  31. Moeyersoms, J.,Martens, D.(2015).Including High-cardinality Attributes in Predictive Models: A Case Study in Churn Prediction in The Energy Sector.Decision Support Systems,72,72-81.
  32. Ngai, E. W. T.,Xiu, L.,Chau, D. C. K.(2009).Application of Data Mining Techniques in Customer Relationship Management: A Literature Review and Classification.Expert Systems with Applications,36(2),2592-2602.
  33. Ogino, S., 2017. The Standout E-Commerce Customer Loyalty Platform Stats of 2017. Retrieved from https://www.annexcloud.com/blog/standout-customer-loyalty-stats-2017/
  34. Qabbaah, H.,Sammour, G.,Vanhoof, K.(2017).Data Mining Techniques to Improve the Response Rate of E-mail campaigns and Customer Loyalty.The International Conference of Technology Innovation, Management and Entrepreneurship,Amman:
  35. Russo, I.,Confente, I.(2017).Customer Loyalty and Supply Chain Management: Business-to-Business Customer Loyalty Analysis.England, UK:Routledge.
  36. Sabbeh, S. F.(2018).Machine-Learning Techniques for Customer Retention: A Comparative Study.International Journal of Advanced Computer Science and Applications,9(2),273-281.
  37. Schroeder, R. G.(2000).Operations Management: Contemporary Concepts and Cases.New York, NY:McGraw‐Hill/Irwin.
  38. Sharma, R. R.,Sachdeva, R.(2017).Evaluating Prediction of Customer Churn Behavior Based on Artificial Bee Colony Algorithm.International Journal Of Engineering and Computer Science,6(1),20017-20021.
  39. Sheu, J.-B.(2007).A Hybrid Fuzzy-optimization Approach to Customer Grouping-based Logistics Distribution Operations.Applied Mathematical Modelling,31(6),1048-1066.
  40. Stalk, G.(1988).Time-the Next Source Of Competitive Advantage.Harvard Business Review,July-August,41-51.
  41. Swani, K.,Brown, B. P.,Milne, G. R.(2014).Should Tweets Differ for B2B and B2C? An Analysis of Fortune 500 Companies' Twitter Communications.Industrial Marketing Management,43(5),873-881.
  42. Upton, D. M.(1995).What Really Makes Factories Flexible?.Harvard Business Review,July-August,74-84.
  43. Vadakattu, R.,Panda, B.,Narayan, S.,Godhia, H.(2015).Enterprise Subscription Churn Prediction.2015 IEEE International Conference on Big Data (Big Data)
  44. Van den Poel, D.,Larivière, B.(2004).Customer Attrition Analysis for Financial Services Using Proportional Hazard Models.European Journal of Operational Research,157(1),196-217.
  45. Verbeke, W.,Dejaeger, K.,Martens, D.,Hur, J.,Baesens, B.(2012).New Insights into Churn Prediction in the Telecommunication Sector: A Profit Driven Data Mining Approach.European Journal of Operational Research,218(1),211-229.
  46. Wania, A.,Kühn, I.,Klotz, S.(2006).Plant Richness Patterns in Agricultural and Urban Landscapes in Central Germany- Spatial Gradients of Species Richness.Landscape and Urban Planning,75(1-2),97-110.
  47. Weiss, G. M.,McCarthy, K.,Zabar, B.(2007).Cost-Sensitive Learning vs. Sampling: Which is Best for Handling Unbalanced Classes with Unequal Error Costs?.The Proceedings of the International Conference on Data Mining,Las Vegas, Nevada, USA:
  48. Wu, M.-Y.,Weng, Y.-C.(2010).A Study of Supplier Selection Factors for High-tech Industries in the Supply Chain.Total Quality Management & Business Excellence,21(4),391-413.
  49. Zeng, F.,Yang, Z.,Li, Y.,Fam, K.-S.(2011).Small Business Industrial Buyers' Price Sensitivity: Do Service Quality Dimensions Matter in Business Markets?.Industrial Marketing Management,40(3),395-404.
  50. Zhu, B.,Baesens, B.,vanden Broucke, S. K.(2017).An Empirical Comparison of Techniques for the Class Imbalance Problem in Churn Prediction.Information Sciences,408,84-99.
  51. Zumel, N.,Mount, J.(2014).Practical Data Science with R.Shelter Island, NY:Manning Publications Co.
被引用次数
  1. (2024)。影響中高農民屋主申請不動產逆向抵押貸款意願因素之研究。住宅學報,33(1),1-27。