题名

中學數學實習師資生教學知能指標之建構:改良式德懷術之應用

并列篇名

Construction of Indicators of Teaching Competences Among Middle School Student Teachers: A Modified Delphi Study

DOI

10.6209/JORIES.202303_68(1).0003

作者

廖本煌(Pen-Hwang Liau);陳欣民(Hisn-Min Chen)

关键词

十二年國教 ; 中學數學實習師資生 ; 改良式德懷術 ; 12-year compulsory education ; middle school student teachers ; modified Delphi study

期刊名称

教育科學研究期刊

卷期/出版年月

68卷1期(2023 / 03 / 01)

页次

73 - 108

内容语文

繁體中文;英文

中文摘要

本研究旨在以改良式德懷術建構一套中學數學教學知能指標,作為評測數學教學知能之工具,以確保師資生教學品質及其專業知能發展的機制,提供相關單位在師資培育、甄選及證照制度時之參考。本研究首創改良式德懷術,依不同的性質目的,研究者可與專家群討論並預設準則,「達成共識」需經統計檢定,加強指標建立之有效性及精準度。本研究邀請德懷術專家成員共25人,他們均具有數學背景,包括九位大學教授、八位國中小校長、四位行政人員及四位現職教師。研究工具採用自編之「中學數學實習師資生能力指標之調查問卷」。本研究之重要結果有:一、建構之「中學數學實習師資生教學知能指標」包含四層面、七向度與34項指標,兼顧數學教學、教室經營、教學評量和教學態度層面,蘊含了十二年國民基本教育強調「有感」、「動手操作」、「引起學習動機與興趣」、「科技融入」的素養教學理念。二、改良式德懷術兼具高效率與高準確率。可依領域爭議性設定目標值,並經統計檢定準確的判斷出專家群達共識的結果,例如本研究在第二回合中就有16項指標已達成共識,第三回合僅需請專家群判斷剩餘的指標。

英文摘要

1. Background. The modern educational reform movement has continually promoted high teaching quality since the 1980s. In the education system of Taiwan, a reliable evaluation system for probationary teachers has been developed. First, since the approval of the Teachers Cultivation Law in Taiwan by legislators in 1994, both colleges and general universities have offered education programs for teaching mathematics. Second, during the teachers' probationary period, both an experienced math teacher and a university professor play the role of supervisors and mentors. However, not all experienced school teachers have mentor training experience. Furthermore, the opinions about the criteria for assessing probationary teachers may differ between school teachers and university professors. Third, after 2002, the probationary period for new teachers in secondary schools in Taiwan was changed from 1 year (two semesters) to half a year (one semester). Therefore, identifying ways to make the half year of apprenticeship as effective as a 1-year apprenticeship is crucial. Fourth, the vision of the 12-year compulsory education is "Making All Students More Successful," which emphasizes that students are active learners. Core competencies refer to the knowledge, ability, and attitude that an individual must possess to adapt to daily life situations and face future challenges (Ministry of Education, 2014). Based on the aforementioned concerns, establishing an appropriate quality assessment system that not only ensures that probationary teachers' grades are objective and consistent but also maintains the quality of all future mathematics teachers is essential. This is the rationale for developing a set of indicators to serve as a fair standard for evaluating each probationary math teacher in secondary schools. Accordingly, this study applied a modified Delphi method to establish a set of feasible and practical indicators for the evaluation of the teaching competence of probationary mathematics teachers in Taiwan. Moreover, the proposed modified Delphi method was tested and verified. 2. Review of Literature on the Delphi Method. The Delphi technique is a process of collecting and refining the opinions of experts in order to obtain a consensus on a particular topic of present or future action, especially topics for which there is little knowledge of certainty (Dalkey & Helmer, 1963; Fischer, 1978; Hardy et al., 2004; Powell, 2003). The Delphi method has been widely applied in education, business, industry, heath care, and many other fields worldwide. Although the Delphi method is notable for its democratic, structured approach and participant anonymity, little is known about the minimum level of agreement required to achieve a consensus, thus leaving the technique open to criticism (Goodman, 1987; Keeney et al., 2001; Osborne et al., 2003; Powell, 2003; Reid, 1988; Rowe et al., 1991; Williams & Webb, 1994). Concerns regarding this technique include how to achieve a consensus for an indicator and what is the minimum level of agreement to reach a consensus in a given situation. 3. Methods. Step 1: Set the target values: Because the expert panel in this study comprised 25 experts and a topic from the education field was selected, we used a higher criterion to reach a consensus. After discussion with other researchers, we decided to use a 5-point Likert scale and set the following target values: (1) the percentage of respondents choosing "5" should be greater than 65% without no one choosing "1"or "2"; (2) For mean, if 17 experts choose "5" and 8 experts choose "3", set the mean as 4.36. (3) For standard deviation, if 17 experts choose "5", 4 experts choose "4", and the other 4 experts choose "3", set the SD as 0.77. Step 2: Compare the observation results with the target values: After determining the target values, means, and standard deviations, we perform the statistical hypothesis process to reach a consensus as follows. (1) Testing of the Standard Deviation: H_0: σ ≥.77 vs. H_1: σ<.77. First, we compare the sample standard deviation for each indicator with the target value through statistical hypothesis testing. If the null hypothesis is not rejected, it indicates that the expert panel's opinions are not consistent, and that the indicators must be modified and experts must be consulted again for further analysis until a consensus is reached. Otherwise, if the null hypothesis is rejected, it indicates that the experts have reached a consensus, and that further input from the expert panel is not needed. We then proceed with testing the mean of the indicator. (2) Testing of the Mean: H_0: µ ≤ 4.36 vs. H_1: µ > 4.36. After the standard deviation is tested, the mean of the indicator is assessed to validate its' importance. If the null hypothesis is rejected, it indicates that a consensus has been reached for the expert panel's opinions, and that further input from the expert panel is not needed. Otherwise, if the null hypothesis is not rejected, the indicators must be modified, and that the experts must be consulted again for further analysis until a consensus is reached. If the experts are consulted again, the standard deviation testing must also be performed again. To sum up, this modified method is more stringent than the traditional Delphi method and more efficiently identifies final indicators because some ideal indicators may be preserved only through one or two rounds. 4. Results. This study found that a set of 4 aspects, 7 vectors, and 34 indicators are essential components of teaching competences of middle school student teachers. 5. Conclusion. (1) A set of indicators were established in this study by considering aspects such as mathematics teaching, class management, evaluation, and attitude. These indicators emphasized "perceptible," "hands-on learning," "motivation," and "technology integration," which corresponded to the core competencies of the 12-year compulsory education. (2) The proposed modified Delphi method can be used to effectively and accurately judge the expert panel's consensus. For example, a consensus was reached for the opinions of the expert panel regarding 16 indicators in round 2; therefore, the experts only had to judge the last indicators in round 3.

主题分类 社會科學 > 教育學
参考文献
  1. 左台益、李健恆(2018)。素養導向之數學教材設計與發展。教育科學研究期刊,63(4),29-58。https://doi.org/10.6209/JORIES.201812_63(4).0002【Tso, T.-Y., & Lei, K.-H. (2018). Design and development of mathematical literacy-oriented subject materials. Journal of Research in Education Sciences, 63(4), 29-58. https://doi.org/10.6209/JORIES.201812_63(4).0002】
    連結:
  2. 左台益、胡政德(2009)。準教師從真實情境中建構數學模式的認知因素分析與機制。當代教育研究季刊,17(4),61-101。https://doi.org/10.6151/CERQ.2009.1704.03 【Tso, T.-Y., & Hu, C.-T. (2009). Analyzing and understanding the cognitive factors and translation mechanisms of pre-service teachers in their processes of mathematical modeling. Contemporary Educational Research Quarterly, 17(4), 61-101. https://doi.org/10.6151/CERQ.2009.1704.03】
    連結:
  3. 吳正新(2019)。數學素養導向評量試題研發策略。中等教育,70(3),11-35。https://doi.org/10.6249/SE.201909_70(3).0024【Wu, J.-S. (2019). The approaches of developing mathematical literacy-based assessment. Secondary Education, 70(3), 11-35. https://doi.org/10.6249/SE.201909_70(3).0024】
    連結:
  4. 林素微(2018)。數學課室教師支持與學生數學素養關聯探討:以PISA 2012臺灣資料為例。臺灣數學教師,39(1),1-17。https://doi.org/10.6610/TJMT.201804_39(1).0001【Lin, S.-W. (2018). The investigation of relationship between mathematics teacher support and mathematical literacy: A secondary analysis of Taiwan PISA 2012 data. Taiwan Journal of Mathematics Teachers, 39(1), 1-17. https://doi.org/10.6610/TJMT.201804_39(1).0001】
    連結:
  5. 林淑梤、張惠博、段曉林(2009)。促進實習教師教學學習的夥伴式實習輔導。教育科學研究期刊,54(1),23-53。https://doi.org/10.3966/2073753X2009035401002【Lin, S.-F., Chang, H.-P., & Tuan, H.-L. (2009). Partnership mentoring for improving mentees’ teacher learning. Journal of Research in Education Sciences, 54(1), 23-53. https://doi.org/10.3966/2073753X2009035401002】
    連結:
  6. 林凱胤、王國華(2011)。從知識移轉觀點看實習教師的教學知能發展。中等教育季刊,62(3),90-113。https://doi.org/10.6249/SE.2011.62.3.05【Lin, K.-Y., & Wang, K.-H. (2011). To see a student teacher’s development of teaching knowledge and ability from a knowledge transfer perspective. Secondary Education, 62(3), 90-113. https://doi.org/10.6249/SE.2011.62. 3.05】
    連結:
  7. 林碧珍、蔡文煥(2007)。小學數學領域輔導教師培訓課程及其實施成效。科學教育學刊,15(5),521-542。https://doi.org/10.6173/CJSE.2007.1505.02【Lin, P.-J., & Tsai, W.-H. (2007). A mentor training program in mathematics and its effect. Chinese Journal of Science Education, 15(5), 521-542. https://doi.org/10.6173/CJSE.2007.1505.02】
    連結:
  8. 林碧珍、鄭章華、陳姿靜(2016)。數學素養導向的任務設計與教學實踐:以發展學童的數學論證為例。教科書研究,9(1),109-134。https://doi.org/10.6481/JTR.201604_9(1).04【Lin, P.-J., Chen, C.-H., & Chen, C.-C. (2016). Task design and implementation for mathematical literacy: Developing students’ mathematical argumentation. Journal of Textbook Research, 9(1), 109-134. https://doi. org/10.6481/JTR.201604_9(1).04】
    連結:
  9. 李源順、林福來(2003)。實習教師的學習:動機、身份與反思互動下的成長。科學教育學刊,11(1),1-25。https://doi.org/10.6173/CJSE.2000.0802.05【Lee, Y.-S., & Lin, F.-L. (2003). The learning of a probationary teacher: Growth in the interaction of motives, identities, and reflections. Chinese Journal of Science Education, 11(1), 1-25. https://doi.org/10.6173/CJSE. 2000.0802.05】
    連結:
  10. 李源順、林福來、呂玉琴、陳美芳(2008)。小學教師數學教學發展標準之探究:學者的觀點。科學教育學刊,16(6),627-650。https://doi.org/10.6173/CJSE.2000.0802.05【Lee, Y.-S., Lin, F.-L., Leu, Y.-C., & Chen, M.-F. (2008). The standards for development in elementary mathematics teaching: Perspectives of elementary mathematics educators. Chinese Journal of Science Education, 16(6), 627-650. https://doi.org/10.6173/CJSE.2000.0802.05】
    連結:
  11. 徐靜嫻(2013)。PBL融入師資培育教學實習課程之個案研究。教育科學研究期刊,58(2),91-121。https://doi.org/10.6209/JORIES.2015.60(2).01 【Hsu, C.-H. (2013). Case study on applying problem-based learning to the student teaching curriculum. Journal of Research in Education Sciences, 58(2), 91-121. https://doi.org/10.6209/JORIES.2015.60(2).01】
    連結:
  12. 符碧真、黃源河(2016)。實地學習銜接師資培育理論與實務的藥方?教育科學研究期刊,61(2),57-84。https://doi.org/10.6209/JORIES.2015.60(2).01 【Fwu, B.-J., & Hwang, Y.-H. (2016). Field-based experience: A solution for the theory-practice divide in teacher education? Journal of Research in Education Sciences, 61(2), 57-84. https://doi.org/10.6209/JORIES.2015. 60(2).01】
    連結:
  13. 黃嘉莉(2019)。師資養成公費制度之歷史探究。教育科學研究期刊,64(2),99-129。https://doi.org/10.6209/JORIES.201906_64(2).0004 【Huang, J.-L. (2019). A historical approach on the government-funded system for teacher preparation. Journal of Research in Education Sciences, 64(2), 99-129. https://doi.org/10.6209/JORIES.201906_64(2).0004】
    連結:
  14. 黃嘉莉、葉怡芬、許瑛韶、曾元顯(2017)。取得中學教職的關鍵因素:運用決策樹探勘師資培育歷程。教育研究科學期刊,62(2),89-124。https://doi.org/10.6209/JORIES.2015.60(2).01 【Huang, J.-L., Yeh, Y.-F., Hsu, Y.-S., & Tseng, Y.-H. (2017). Critical factors of becoming secondary school teachers: Mining the process of teacher education by decision trees. Journal of Research in Education Sciences, 62(2), 89-124. https://doi.org/10. 6209/JORIES.2015.60(2).01】
    連結:
  15. 黃凱旻、金鈐(2003)。一個輔導中學數學實習教師教學概念轉變的行動研究。師大學報:科學教育類,48(1),21-46。https://doi.org/10.6300/JNTNU.2003.48(1).02【Huang, K.-M., & Chin, C. (2003). The effect of mentoring on development of a secondary mathematics probationary teacher’s conception(s) of mathematics teaching: An action research. Journal of Taiwan Normal University: Mathematics & Science Education, 48(1), 21-46. https://doi.org/10.6300/JNTNU.2003.48(1).02】
    連結:
  16. 蔡寬信、楊智穎(2013)。透過專業發展學校落實職前教學實習課程。臺灣教育評論月刊,2(4),56-62。https://doi.org/10.6791/TER.201212.0027【Tsai, K.-H., & Yang, J.-Y. (2013). Implementing pre-service teaching practicum courses through professional development schools. Taiwan Educational Review Monthly, 2(4), 56-62. https://doi.org/10.6791/TER.201212. 0027】
    連結:
  17. 劉怡薰、宋曜廷(2020)。中等學校師資生任教學科專門知識檢測機制之探討。教育科學研究期刊,65(2),167-194。https://doi.org/10.6209/JORIES.2015.60(2).01【Liu, I.-H., & Sung, Y.-T. (2020). Inspection and proposal for evaluating secondary school teacher students’ content knowledge and pedagogical content knowledge. Journal of Research in Education Sciences, 65(2), 167-194. https://doi.org/10.6209/JORIES.2015.60(2).01】
    連結:
  18. 謝佳叡(2012)。中學數學實習教師之數學教學概念心像探究─以學生數學思考面向為例。中等教育,63(3),48-67。https://doi.org/10.6249/SE.2012.63.3.03【Hsieh, C.-J. (2012). Mathematics intern teachers’ mental images for mathematics thinking: Students’ mathematical thinking in classroom. Secondary Education, 63(3), 48-67. https://doi.org/10.6249/SE.2012.63.3.03】
    連結:
  19. 謝佳叡(2014)。中學數學實習教師之學生參與概念心像探究。臺灣數學教育期刊,1(2),1-24。https://doi.org/10.6610/TJMT.20141001.03【Hsieh, C.-J. (2014). Mathematics intern teachers’ concept images for mathematics teaching: The aspect of student engagement. Taiwan Journal of Mathematics, 1(2), 1-24. https://doi.org/10.6610/TJMT.20141001.03】
    連結:
  20. 謝豐瑞(2012)。國高中數學教學專業知能指標。中等教育,63(3),30-47。https://doi.org/10.6249/SE.2012.63.3.03【Hsieh, F.-J. (2012). Indicators of professional mathematics teaching competence at the secondary school level. Secondary Education, 63(3), 30-47. https://doi.org/10.6249/SE.2012.63.3.03】
    連結:
  21. 蘇意雯(2016)。「數學教學實習」課程規畫與實踐之研究。臺灣數學教師,37(1),1-12。https://doi.org/10.6610/TJMT.20141001.03【Su, Y.-W. (2016). Mathematics intern teachers’ concept images for mathematics teaching: The aspect of student engagement. Taiwan Journal of Mathematics, 37(1), 1-12. https://doi.org/10.6610/TJMT.20141001.03】
    連結:
  22. 鍾靜、張淑怡、陳幸玫、陸昱任、戴坤邦(2012)。國小數學教師專業標準之建構。科學教育學刊,20(3),217-239。https://doi.org/10.6173/CJSE.2012.2003.04【Chung, J., Chang, S.-I., Chen, C.-M., Lu, Y.-J., & Tai, K.-P. (2012). The construction of professional standards for elementary school mathematics teachers. Chinese Journal of Science Education, 20(3), 217-239. https://doi. org/10.6173/CJSE.2012.2003.04】
    連結:
  23. Ambrosiadou, B.-V., & Goulis, D. G. (1999). The DELPHI method as a consensus and knowledge acquisition tool for the evaluation of the DIABETES system for insulin administration. Medical Inform, 24(4), 257-268. https://doi.org/10.1080/146392399298285
    連結:
  24. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
    連結:
  25. Carbonneau, K. J., Zhang, X., & Ardasheva, Y. (2018). Preservice educators’ perceptions of manipulatives: The moderating role of mathematics teaching self-efficacy. School Science and Mathematics, 118(7), 300-309. https://doi.org/10.1111/ssm.12298
    連結:
  26. Clayton, M. J. (1997). Delphi: A technique to harness expert opinion for critical decision-making tasks in education. Educational Psychology, 17(4), 373-386. https://doi.org/10.1080/0144341970170401
    連結:
  27. Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the user of experts. Management Science, 9(3), 458-467. https://doi.org/10.1287/mnsc.9.3.458
    連結:
  28. De Villiers, M. R., De Villiers, P. J. T., & Kent, A. P. (2005). The Delphi technique in health science education research. Medical Teacher, 27(7), 639-643. https://doi.org/10.1080/13611260500069947
    連結:
  29. Goodman, C. M. (1987). The Delphi technique: A critique. Journal of Advanced Nursing, 12(6), 729-734. https://doi.org/10.1111/j.1365-2648.1987.tb01376.x
    連結:
  30. Hardy, D. J., O’Brien, A. P., Gaskin, C. J., O’Brien, A. J., Morrison-Ngatai, E., Skews, G., Ryant, T., & Mcnulty, N. (2004). Practical application of the Delphi technique in a bicultural mental health nursing study in New Zealand. Journal of Advanced Nursing, 46(1), 95-109. https://doi. org/10.1111/j.1365-2648.2003.02969.x
    連結:
  31. Jones, J., & Hunter, D. (1995). Consensus methods for medical and health services research. British Medical Journal, 311, 376-380. https://doi.org/10.1136/bmj.311.7001.376
    連結:
  32. Keeney, S., Hasson F., & McKenna, H. P. (2001). A critical review of the Delphi technique as a research methodology for nursing. International Journal of Nursing, 38(2), 195-200. https://doi.org/10.1016/S0020-7489(00)00044-4
    連結:
  33. Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692-720. https://doi.org/10.1002/tea.10105
    連結:
  34. Powell, C. (2003). The Delphi technique: Myths and realities. Journal of Advanced Nursing, 41(4), 376-382. https://doi.org/10.1046/j.1365-2648.2003.02537.x
    連結:
  35. Rowe, G., Wright, G., & Bolger, F. (1991). Delphi: A reevaluation of research and theory. Technological Forecasting and Social Change, 39(3), 235-251. https://doi.org/10.1016/0040-1625(91)90039-I
    連結:
  36. Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
    連結:
  37. Taylor, P. M. (2002). Implementing the standards: Keys to establishing positive professional inertia in preservice mathematics teachers. School Science and Mathematics, 102(3), 137-142. https://doi.org/10.1111/j.1949-8594.2002.tb17907.x
    連結:
  38. Williams, P., & Webb, C. (1994). The Delphi technique: A methodological discussion. Journal of Advanced Nursing, 19, 180-186. https://doi.org/10.1111/j.1365-2648.1994.tb01066.x
    連結:
  39. 吳清基、黃嘉莉、張明文(2011)。我國師資培育政策回顧與展望。載於國家教育研究院(主編),我國百年教育回顧與展望(頁1-20)。國家教育研究院。【Wu, C.-J., Huang, J.-L., & Chang, M.-W. (2011). Retrospect and prospect of teacher education policy in Taiwan. In National Academy for Education Research (Ed.), Retrospect and prospect of education over the past one hundred years in Taiwan (pp. 1-20). National Academy for Educational Research.】
  40. 吳麗珍、鄭碧雲、郭重吉(2018)。國小數理教師教學專業能力類型之探討。師資培育與教師專業發展期刊,11(2),27-61。https://doi.org/10.3966/207136492018081102002【Wu, L.-C., Cheng, P.-Y., & Guo, C.-J. (2018). A study on the classification of elementary school mathematics/ science teachers regarding their professional teaching competence. Journal of Teacher Education and Professional Development, 11(2), 27-61. https://doi.org/10.3966/207136492018081102002】
  41. 林永豐(2015)。新課綱、新觀點:能力指標的困境與調整。臺灣教育評論月刊,4(1),203-207。【Lin, Y.-F. (2015). New curriculum, new viewpoint: The dilemma and adjustment of ability indicators. Taiwan Educational Review Monthly, 4(1), 203-207.】
  42. 林新發、王秀玲、鄧珮秀(2007)。我國中小學師資培育現況、政策與展望。教育研究與發展期刊,3(1),57-80。【Lin, H.-F., Wang, H.-L., & Teng, P.-H. (2007). The current situation, policy and prospect of elementary and secondary teacher education in Taiwan. Journal of Educational Research and Development, 3(1), 57-80.】
  43. 林福來、單維彰、李源順、鄭章華(2013)。十二年國民基本教育領域綱要內容前導研究整合型研究之子計畫三:十二年國民基本教育數學領域綱要內容之前導研究研究報告(NAER-102-06-A-1-02-03-1-12)。國家教育研究院。【Lin, F.-L., Shann, W.-C., Lee, Y.-S., & Chen, C.-H. (2013). 12-year basic education contents leading research sub-project 3 of integrated research: Preliminary research report on the content of the 12-year basic education mathematics field preparatory research to support the development of curriculum guidelines for various content areas in twelve year basic education: Sub-project in mathematics (NAER-102-06-A-1-02-03-1-12). National Academy Education Research.】
  44. 李源順、林福來(2000)。數學教師的專業成長:教學多元化。師大學報:科學教育類,45(1),1-25。https://doi.org/10.6300/JNTNU.2000.45(1).01【Lee, Y.-S., & Lin, F.-L. (2000). Mathematics teachers’ professional development: Making sense of multi-strategy teaching. Journal of Taiwan Normal University: Science Education, 45(1), 1-25. https://doi.org/10.6300/ JNTNU.2000.45(1).01】
  45. 李國偉、黃文璋、楊德清、劉柏宏(2013)。教育部提升國民素養實施方案─數學素養研究計畫結案報告。教育部。http://tame.tw/old/forum.php?mod=viewthread&tid=176【Lih, K.-W., Huang, W.-J., Yang, D.-C., & Liu, P.-H. (2013). The Ministry of Education’s implementation plan for improving national literacy ─ A report on the conclusion of the mathematical literacy research project. Ministry of Education. http://tame.tw/old/forum.php?mod=viewthread&tid=176】
  46. 高熏芳(2006)。邁向專業標準本位之師資培育:國民小學初任教師專業標準發展之研究(NSC 95-2413-H-032-004)。私立淡江大學。【Kao, H.-F. (2006). Towards teacher training based on professional standards: A study on the development of professional standards for first-time teachers in national primary schools (NSC 95-2413-H-032-004). Tamkang University.】
  47. 教育部(2014)。十二年國民基本教育課程綱要。http://www.naer.edu.tw/ezfiles/0/1000/at tach/87/pta_5320_2729842_56626.pdf【Ministry of Education. (2014). 12-year national basic education curriculum outline. http://www.naer.edu.tw/ezfiles/0/1000/at tach/87/pta_5320_2729842_56626.pdf】
  48. 教育部(2019)。師資培育法。全國法規資料庫。https://law.moj.gov.tw/LawClass/LawAll.aspx? PCode=H0050001。【Ministry of Education. (2019). Teacher Education Law. National Regulatory Database. https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=H0050001】
  49. 陳采姿(2015)。動態幾何軟體GeoGebra融入高二數學幾何教學設計與反思(未出版碩士論文)。國立中山大學。【Chen, T.-T. (2015). The design and reflections on activities developed for the integration of GeoGebra into 11th grade geometry instruction [Unpublished master’s thesis]. National Sun Yat-Sen University.】
  50. 國家教育研究院(2021)。師資培育。中華民國教育部部史全國資訊網。http://history.moe.gov. tw/policy.asp?id=5【National Academy for Education Research. (2021). Teacher training. National Information Network on the History of the Ministry of Education of the Republic of China. http://history.moe.gov.tw/policy.asp?id=5】
  51. 曾建銘(2014)。選擇題命題原則與不良題範例。載於蕭儒棠、曾建銘、吳慧珉、林世華、謝佩蓉、謝名娟(主編),測驗之編製─命題技巧與測驗資料分析(頁27-58)。國家教育研究院。【Cheng, C.-M. (2014). Multiple-choice proposition principles and examples of bad questions. In J.-T. Hsiao, C.-M. Cheng, H.-M. Wu, S.-H. Lin, P.-J. Hsieh, & M.-C. Hsieh (Eds.), Compilation of tests ─ Proposition skills and test data analysis (pp. 27-58). National Education.】
  52. 葉裕益、吳宛柔、林美杏、陳建亨、許皓雲、曾明德、吳慧珉、楊凱琳(2018)。由國中學力檢測數學命題反思試題設計原則。臺灣數學教師,39(1),18-34。https://doi.org/10.6610/ TJMT.20141001.03【Yeh, Y.-Y., Wu, W.-R., Lin, M.-H., Chen, C.-H., Hsu, H.-Y., Tseng, M.-T., Wu, H.-M., & Yang, K.-L. (2018). Rethinking item design principles of the basic mathematical competence test for junior high schools. Taiwan Journal of Mathematics, 39(1), 18-34. https://doi.org/10.6610/TJMT.20141001.03】
  53. 盧威志(2012)。國中教師文化能力指標建構與實證之研究(未出版博士論文)。國立高雄師範大學。【Lu, W.-C. (2012). The construction and empirical research of cultural competence indicators for junior high school teachers [Unpublished doctoral dissertation]. National Kaohsiung Normal University.】
  54. 鄭章華(2018)。十二年國民基本教育課程綱要課程與教學實踐工作計畫─國中階段。國家教育研究院。【Chen, C.-H. (2018). Twelve-year national basic education curriculum outline curriculum and teaching practice work plan - Middle school stage. National Education Research.】
  55. Cochran, S. W. (1983). The Delphi method: Formulating and refining group judgments. Journal of Human Sciences, 2(2), 111-117.
  56. Fennema, E., & Franke, M. L. (1992). Teacher’s knowledge and its impact. In D. A. Grouws (Ed.), Handbook of research on mathematical teaching and learning: A project of the national council of teachers of mathematics (pp. 147-164). Macmillan.
  57. Fischer, R. G. (1978). The Delphi method: A description, review and criticism. Journal of Academic Librarianship, 4(2), 64-70.
  58. Gattuso, L., & Mailloux, N. (1994). Conceptions about mathematics teaching of preservice elementary and high-school teachers. In J. P. da Ponte & J. F. Matos (Eds.), Proceedings of the 18th International Conference for the Psychology of Mathematics Education (pp. 392-399). Lisbon.
  59. Krainer, K. (1999). Learning from Gisela-or: Finding a bridge between classroom development, school development, and the development of educational system. In F.-L. Lin (Ed.), Proceedings of the 1999 international conference of mathematics teacher education (pp. 76-95). National Taiwan Normal University.
  60. Kim-Godwin, Y. S., Alexander, J. W., Felton, G., Mackey, M. C., & Kasakoff, A. (2006). Prerequisites to providing culturally competent care to Mexican migrant farm workers: A Delphi study. Journal of Cultural Diversity, 13(1), 27-33.
  61. Maynard, T., & Furlong, J. (1995). Learning to teach and models of mentoring. In T. Kerry & A. S. Mayes (Eds.), Issues in mentoring (pp. 10-24). Routledge.
  62. Niss, M., & Højgaard, T. (Eds.). (2011). Competencies and mathematical learning: Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde University.
  63. Reid, N. G. (1988). The Delphi technique: Its contribution to the evaluation of professional practice. In R. Ellis (Ed.), Professional competence and quality assurance in the caring professions (pp. 230-262). Croom Helm.
  64. SLO/NVORWO. (1994). Standards for primary mathematics teacher education. Freudenthal Institute.
  65. Stacey, K. G., & Turner, R. (2015). The evolution and key concepts of the PISA mathematics frameworks. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy: The PISA experience (pp. 5-33). Springer Cham.
被引用次数
  1. (2024)。國中基礎學科教科書編審者對素養導向教科書設計之觀點與實踐。教科書研究,17(1),67-109。