题名

On-Line Video Segmentation Using Methods of Fault Detection in Multidimensional Time Sequences

作者

Yevgeniy Bodyanskiy;Dmitriy Kinoshenko;Sergii Mashtalir;Olena Mikhnova

关键词

Video Segmentation ; Multidimensional Time Sequence ; Vector Autoregression Model

期刊名称

International Journal of Electronic Commerce Studies

卷期/出版年月

3卷1期(2012 / 06 / 01)

页次

1 - 19

内容语文

英文

英文摘要

Recently, video segmentation with time series has been recognized as an important research topic. Despite great progress in this field, existing approaches have some drawbacks. We first give an overview of existing techniques and approaches, and then we analyze the applicability of the recursive least square method, multidimensional modification of exponentially weighted stochastic approximation algorithm, methods of Kaczmarz, Shown, Brown, Chow, Trigg-Leach, Roberts-Reed, finite and infinite memory algorithms for detection of faults in multidimensional time sequences. At the end we have come to the conclusion that the Trigg-Leach method is preferable for fault detection in video time sequences. Model efficiency has been checked on video containing endoscopic operation.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Angelosante, D. ,Giannakis, G.(2011).Sparse graphical modeling of piecewise-stationary time series.36-th International Conference on Acoustics, Speech and Signal Processing,Prague:
  2. Badavas, P.C.(1993).Real-time statistical process control.Englewood Cliffs, NJ:Prentice-Hall.
  3. Bouchard, D.(2006).,Center for Human Modeling and Simulation, University of Pennsylvania.
  4. Brown, R.G.(1963).Smoothing, forecasting, and prediction of discrete time series.Englewood Cliffs, NJ:Prentice Hall.
  5. Budvytis, I. ,Badrinarayanan, V. ,Cipolla, R.(2011).Semi-supervised video segmentation using tree structured graphical models.IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs,Colorado Springs:
  6. Chow, E.Y. ,Willsky, A.S.(1980).Issues in the development of a general design algorithm for reliable failure detection.19-th IEEE Conference of Decision and Control,Albuquerque:
  7. Cutler, R.,Davis, L.(2000).Robust real-time periodic motion detection, analysis and applications.IEEE Transactions on Pattern Analysis and Machine Intelligence,22(8),781-796.
  8. Goldman, D.R.(2007).University of Washington.
  9. Harchaoui, Z. ,Bach, F. ,Moulines, E.(2009).Kernel change-point analysis.23-rd Annual Conference on Neural Information Processing Systems,Vancouver:
  10. Harchaoui, Z.,Lévy-Leduc, C.(2010).Multiple change-point estimation with a total variation penalty.Journal of the American Statistical Association,105(492),1480-1493.
  11. Hoai, M. ,Lan, Z. ,Torre, F.(2011).Joint segmentation and classification of human actions in video.IEEE Conference on Computer Vision and Pattern Recognition,Colorado Springs:
  12. Huang, Y.(2009).,Bridgewater:Huawei Technologies.
  13. Isermann, R.(1984).Process fault detection based modeling and estimating methods – A survey.Automatica,20(4),387-404.
  14. Juselis, K.(1994).The cointegrated var-model.N.Y.:Oxford University Press.
  15. Kaczmarz, S.(1993).Approximate solution of system of linear equations.International Journal of Control,57(5),1269-1271.
  16. Montgomery, D.C.,Johnson, I.A.,Gardiner, J.S.(1990).Forecasting and time series analysis.NY:Mc Graw-Hill.
  17. Ngan, K.,Li, H.(2011).Video segmentation and its applications.NY:Springer.
  18. Nikiforov, I.V.(1986).Sequential detection of changes in stochastic systems.Lecture Notes in Control and Information Sciences,77,216-258.
  19. Pouliezos, A.D.,Stavrakakis, G.S.(1994).Real time fault monitoring of industrial processes.Dordrecht:Kluver Academic Publishers.
  20. Trigg, D.W.,Leach, A.G.(1967).Exponential smoothing with an adaptive response rate.Operational Research Quarterly,18(1),53-59.
  21. Tsoneva, Т.(2007).,Eindhoven.
  22. Xuan, X. ,Murphy, K.(2007).Modeling changing dependency structure in multivariate time series.24-th International Conference on Machine Learning,Corvallis: