题名

Uncertainty Evaluation via Fuzzy Entropy for Multiple Facts

DOI

10.7903/ijecs.1124

作者

Sang-Hyuk Lee;T. O. Ting

关键词

Multiple Facts ; Fuzzy Entropy ; Decision Making ; Similarity Measure

期刊名称

International Journal of Electronic Commerce Studies

卷期/出版年月

4卷2期(2013 / 12 / 01)

页次

313 - 321

内容语文

英文

英文摘要

The fuzzy entropy designed for multiple facts selection has been carried out in this work. The entropy for the fuzzy data with respect to a specified fact is designed through a distance measure method. The obtained fuzzy entropy is then applied for the selection from multiple facts. From the relevant fuzzy entropy, it is concluded that data uncertainty information is limited by the total fact of n-1. The bounded calculation of data uncertainty to each fact is proven for multiple facts, and the decision of fuzzy data to the certain fact among multiple facts has been considered with the assistance of fuzzy entropy calculation.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Bhandari, D.,Pal, N.R.(1993).Some new information measure of fuzzy sets.Information Science,67(3),209-228.
  2. De Luca, A.,Termini, S.(1972).A definition of nonprobablistic entropy in the setting of fuzzy sets theory.Information and Control,20(4),301-312.
  3. Driankov, D.,Hellendoorn, H.,Reinfrank, M.(1996).An introduction to fuzzy control.Berlin, Germany:Springer.
  4. Ghosh, A.(1995).Use of fuzziness measure in layered networks for object extraction: A generalization.Fuzzy Sets and Systems,72(3),331-348.
  5. Kaufmann, A.(1975).Introduction to the theory of fuzzy subsets.New York:Academic Press.
  6. Kosko, B.(1992).Neural Networks and Fuzzy Systems.Englewood Cliffs, NJ:Prentice-Hall.
  7. Kung, C.C.,Su, J.Y.(2007).Affine Takagi-Sugeno fuzzy modeling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion.Control Theory & Application,1(5),1255-1265.
  8. Lee, S.H.,Kim, Y.T.,Cheon, S.P.,Kim, S.S.(2005).Reliable data selection with fuzzy entropy.Lecture Notes in Artificial Intelligence,3613,203-212.
  9. Lee, S.H.,Park, H.J.,Park, W.J.(2008).Similarity computation between fuzzy set and crisp set with similarity measure based on distance.Lecture Notes in Computer Science,4993,644-649.
  10. Lee, S.H.,Pedrycz, W.,Sohn, Gyoyon(2009).Design of similarity and dissimilarity measures for fuzzy sets on the basis of distance measure.International Journal of Fuzzy Systems,11(2),67-72.
  11. Lee, S.H.,Ryu, K.H.,Sohn, G.Y..Study on Entropy and Similarity Measure for Fuzzy Set.IEICE transactions on information and systems,92(9),1783-1786.
  12. Pal, N.R.,Pal, S.K.(1989).Object-background segmentation using new definitions of entropy.IEE Proceedings E (Computers and Digital Techniques),136(4),284-295.
  13. C.E. Shannon, A mathematical theory of communication. The Bell System Technical Journal, 27(3), p379-423, 1948. http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
  14. Xuecheng, L.(1992).Entropy, distance measure and similarity measure of fuzzy sets and their relations.Fuzzy Sets and Systems,52(3),305-318.
  15. Zadeh, L.A.(1965).Fuzzy sets.Information and Control,8(3),338-353.