题名

Deformable Model Using Radial Basis Functions Based Level Set Interpolation with an Ellipse Constraint

DOI

10.7903/ijecs.1350

作者

Hoang-Nam Nguyen;Pi-Ying Cheng;Tai-Yan Kam

关键词

Image Segmentation ; Level Set Interpolation ; Radial Basis Functions ; Deformable Model ; Constrained Quadratic Programming

期刊名称

International Journal of Electronic Commerce Studies

卷期/出版年月

5卷2期(2014 / 12 / 01)

页次

247 - 256

内容语文

英文

英文摘要

A level-set-based method using a radial basis functions (RBFs) based level set interpolation with an ellipse constraint is presented for image contour extraction. In the present method, the initial distance function embedded in the ellipse-constrained RBFs is interpolated using a coarse grid. The deformation of the level set function (LSF) is considered as an update of the RBFs' coefficients by solving an ordinary differential equation (ODE) and non-convex constrained quadratic programming (QCQP). A semi-definite relaxation approach is proposed to solve the non-convex QCQP problem. The proposed level set evolving scheme, which does not need initialization and re-initialization, is efficient and does not suffer from self-flattening. The objects with extremely complex shapes can be exactly fitted with a coarse grid of RBFs' centers and the image extraction is less sensitive to the distribution of the objects in the image domain.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Bernard, O.,Friboulet, D.,Thevenaz, P.,Unser, M.(2009).A variational b-spline level-set: A linear filtering approach for fast deformable model evolution.IEEE Trans. on Image Processing,18(6),1179-1191.
  2. Casselles, V.,Kimmel, R.,Saprio, G.(1997).Geodesic active contours.International Journal of Computer Vision,22(1),61-79.
  3. Chan, T.,Vese, L.(2001).Active contours without edges.IEEE Trans. on Image Processing,10(2),266-277.
  4. Gelas, A.,Bernard, O.,Friboulet, D.,Prost, R.(2007).Compactly supported radial basis functions based collocation method for level-set evolution.IEEE Transactions on Image Processing,16(7),1873-1887.
  5. Li, C.,Xu, C.,Gui, C.,Fox, M. D.(2010).Distance regularized level-set evolution and its application to image segmentation.IEEE Transactions on Image Processing,19(12),3243-3254.
  6. Li, Q.,Wills, D.,Phillips, R.,Viant, W. J.,Griffiths, J. G.,Ward, J.(2004).Implicit fitting using radial basis functions with ellipsoid constraint.Computer Graphics forum,23(1),55-69.
  7. Luo, Z.Q.,Ma, W.K.,So, A.C.,Ye, Y.,Zhang, S.(2010).Semidefinite relaxation of quadratic optimization problems.IEEE Signal Processing Magazine,27(3),20-34.
  8. Mumford, D.,Shah, J.(1989).Optimal approximation by piecewise smooth functions and associated variational problems.Communications on Pure Applied Mathematics,42(5),577-685.
  9. Osher, S.,Sethian, J.(1988).Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations.Journal of Computational Physics,79(1),12-49.
  10. Tutuncu, R.H.,Toh, K.C.,Todd, M.J.(2003).Solving semidefinite-quadratic-linear programs using SDPT3.Math.Programming,95(2),189-217.
  11. Wang, S.,Lim, K.,Khoo, B.,Wang, M.(2007).An extended level-set method for shape and topology optimization.Journal of Computational Physics,221(1),395-421.
  12. Xie, X.,Mirmehdi, M.(2011).Radial basis function based level-set interpolation and evolution for deformable modeling.Image and Vision Computing,29(2-3),167-177.
  13. Ye, Y.,Zhang, S.(2003).New results on quadratic minimization.SIAM J. Optim.,14(1),245-267.