题名

Market Segmentation Using Color Information of Images

DOI

10.7903/ijecs.1400

作者

Ines Daniel;Sarah Frost;Daniel Baier

关键词

Color Space ; Image Clustering ; Market Segmentation

期刊名称

International Journal of Electronic Commerce Studies

卷期/出版年月

6卷1期(2015 / 06 / 01)

页次

137 - 144

内容语文

英文

英文摘要

Market segmentation is an important area of marketing. In this field, researchers use clustering algorithms to divide customers into homogeneous groups. Traditionally, these groups are formed on the basis of survey data. In these surveys, the test persons often have to answer a variety of questions. With the increasing amount of digitalization and improved technical capabilities, new databases are now available for this purpose. For example, potential customers might provide photos that describe their activities, interests, or opinions. In the area of content-based image retrieval (CBIR) there are various methods that currently exist to analyze the similarity of such photos, e.g., using distributional descriptors of colors, textures, or shapes. In this paper we discuss which dissimilarity measures could be used to segment photos by hierarchical clustering on the basis of color. For this purpose we analyzed 2,100 images concerning three color spaces RGB, HSV and CIE L*a*b* using different distance measures as the basis for hierarchical clustering.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Facebook, Statistik. Retrieved on January 16, 2012, from http://www.facebook.com/press/info.php?statistics.
  2. Batchelor, B.G.(2012).Machine vision for industrial applications.Machine Vision Handbook,London:
  3. Daniel, I.,Baier, D.(2013).Lifestyle segmentation based on contents of uploaded images versus ratings of items.Algorithms from and for Nature and Life Studies in Classification, Data Analysis, and Knowledge Organization,Heidelberg:
  4. Geman, D.,Geman, S.,Graffigne, C.,Dong, P.(1990).Boundary detection by constrained optimization.IEEE Transactions on Pattern Analysis and Machine Intelligence,12(7),609-628.
  5. C. Hallerberg, and F. Koch, 20 Millionen Deutsche stellen eigene Fotos ins Internet. Retrieved on January 16, 2012, from http://www.bitkom.org/files/documents/bitkom-presseinfo_einstellen_von_videos_und_bildern_04_09_2009.pdf.
  6. Hermann, A.(Ed.)(2008).Handbuch Marktforschung.Gabler:Wiesbaden.
  7. Rubner, Y.,Tomasi, C.,Guibas, L.J.(2000).The earth mover's distance as a metric for image retrieval.International Journal of Computer Vision,40(2),99-121.
  8. Schanda, J.(Ed.)(2007).Colorimetry.Hoboken:John Wiley & Sons.
  9. Smith, W.R.(1956).Product differentiation and market segmentation as alternative marketing strategies.Journal of Marketing,21(1),3-8.
  10. Swain, M.,Ballard, D.(1991).Color indexing.International Journal of Computer Vision,7(1),11-32.
  11. Vinh, N.X.,Epps, J.,Bailey, J.(2009).Information theoretic measures for clusterings comparison: Is a correction for chance necessary?.Proceedings of the 26th International Conference on Machine Learning,Canada:
  12. Wedel, M.,Kamakura, W.(2000).Market segmentation: Conceptual and methodological foundations.Boston:Kluwer Academic Publishers.
  13. Werman, M.,Peleg, S.,Rosenfeld, A.(1985).A distance metric for multidimensional histograms.Computer Vision, Graphics, and Image Processing,32(3),328-336.
  14. Wyszecki, G.,Stiles, W.(2000).Concepts and methods, quantitative data and formulae.New York:Wiley.