题名

INTERACTION COMMERCE, A TECHNOLOGICAL ARCHITECTURE FOCUSED ON RECOMMENDER SYSTEM

DOI

10.7903/ijecs.1443

作者

Luca Salvatori;Fausto Marcantoni

关键词

Social Commerce Architecture ; Electronic Commerce Architecture ; Recommender System Architecture ; Recommender System with Social Network

期刊名称

International Journal of Electronic Commerce Studies

卷期/出版年月

7卷2期(2016 / 12 / 01)

页次

105 - 134

内容语文

英文

中文摘要

This paper aims at introducing a type of social commerce architecture to which the name Interaction Commerce has been given. First, a global description of the main macro-components forming the structure of this architecture is provided. Such components also take care of managing e-commerce activities and social relationships within the architecture. Second, the focus is set on the analysis of the single components that are key to the social aspects of the architecture. A special chapter is then entirely focussed on a topic that is considered extremely important by the entire research community, i.e., recommender systems. After providing a general introduction on the topic, the two most common recommendation approaches are analyzed and compared. These are the content-based approach and the collaborative filtering approach. The analysis has shown how all recommender systems are threatened by the cold-start problem. Studying recommender systems has allowed for their implementation in the architecture, which now has a new "social" approach that is able to solve the new user cold-start problem. An architecture prototype was developed and tested in order to be validated.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Adomavicius, G.,Tuzhilin, A.(2005).Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions.Knowledge and Data Engineering,17(6),734-749.
  2. Ahn, H.J.(2008).A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem.Information Sciences,178(1),37-51.
  3. Ali, S.M.,Ghani, I.(2012).A review on recommender techniques, systems and evaluation metrics.Science International Lahore,24(4),503-511.
  4. Basu, C.,Hirsh, H.,Cohen, W.(1998).Recommendation as classification: Using social and content-based information in recommendation.Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence,Madison, Wisconsin, USA:
  5. Bobadilla, J.,Hernando, A.,Ortega, F.,Bernal, J.(2011).A framework for collaborative filtering recommender systems.Expert Systems with Applications,38(12),14609-14623.
  6. Bobadilla, J.,Hernando, A.,Ortega, F.,Gutiérrez, A.(2012).Collaborative filtering based on significances.Information Sciences,185(1),1-17.
  7. Bobadilla, J.,Ortega, F.,Hernando, A.,Bernal, J.(2012).A collaborative filtering approach to mitigate the new user cold start problem.Knowledge-Based Systems,26,225-238.
  8. Bobadilla, J.,Ortega, F.,Hernando, A.,Gutiérrez, A.(2013).Recommender systems survey.Knowledge-Based Systems,46,109-132.
  9. Brusilovsky, P.(Ed.),Kobsa, A.(Ed.),Nejdl, W.(Ed.)(2007).The Adaptive Web.Berlin:Springer.
  10. Burke, R.(1999).Integrating knowledge-based and collaborative-filtering recommender systems.Workshop on AI and Electronic Commerce,Orlando, Florida:
  11. Candillier, L.,Meyer, F.,Boullé, M.(2007).Comparing state-of-the-art collaborative filtering systems.Machine Learning and Data Mining in Pattern Recognition,Berlin:
  12. Chen, Y.Y.,Lai, F.W.,Goh, K.N.,Daud, S.C.(2013).The effect of integrating social plugins into e-commerce website: A study on online consumer behaviour.7th International Conference on Ubiquitous Information Management and Communication,Kota Kinabalu, Malaysia:
  13. Cleger-Tamayo, S.,Fernández-Luna, J.M.,Huete, J.F.(2012).Top-N news recommendations in digital newspapers.Knowledge-Based Systems,27,180-189.
  14. Cosley, D.,Lam, S.K.,Albert, I.,Konstan, J.A.,Riedl, J.(2003).Is seeing believing? How recommender system interfaces affect users' opinions.SIGCHI Conference on Human Factors in Computing Systems,Ft. Lauderdale, Florida, USA:
  15. Curty, R.G.,Zhang, P.(2013).Website features that gave rise to social commerce: a historical analysis.Electronic Commerce Research and Applications,12(4),260-279.
  16. Deshpande, M.,Karypis, G.(2004).Item-based top-n recommendation algorithms.ACM Transactions on Information Systems,22(1),143-177.
  17. du Boucher-Ryan, P.,Bridge, D.(2006).Collaborative recommending using formal concept analysis.Knowledge-Based Systems,19(5),309-315.
  18. Ghazanfar, M.,Prugel-Bennett, A.(2011).Fulfilling the needs of gray-sheep users in recommender systems, a clustering solution.International Conference on Information Systems and Computational Intelligence,Harbin, China:
  19. Goldberg, Do,Nichols, D.,Oki, B.M.,Terry, D.(1992).Using collaborative filtering to weave an information tapestry.Communications of the ACM,35(12),61-70.
  20. Herlocker, J.L.,Konstan, J.A.,Borchers, A.,Riedl, J.(1999).An algorithmic framework for performing collaborative filtering.22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,Berkeley, California, USA:
  21. Herlocker, J.L.,Konstan, J.A.,Riedl, J.(2000).Explaining collaborative filtering recommendations.2000 ACM Conference on Computer Supported Cooperative Work,Philadelphia, PA, USA:
  22. Herlocker, J.L.,Konstan, J.A.,Terveen, L.G.,Riedl, J.T.(2004).Evaluating collaborative filtering recommender systems.ACM Transactions on Information Systems,22(1),5-53.
  23. Hofmann, T.(2004).Latent semantic models for collaborative filtering.ACM Transactions on Information Systems,22(1),89-115.
  24. Ickler, H.,Schülke, S.,Wilfling, S.,Baumöl, U.(2009).New challenges in e-commerce: how social commerce influences the customer process.5th National Conference on Computing and Information Technology,Bangkok, Thailand:
  25. Jones, K. Sparck(1972).A statistical interpretation of term specificity and its application in retrieval.Journal of documentation,28(1),11-21.
  26. Kang, Y.R.,Park, C.(2009).Acceptance factors of social shopping.Proceedings of 11th International Conference on Advanced Communication Technology,Korea:
  27. Kim, D.(2006).Process chain: A new paradigm of collaborative commerce and synchronized supply chain.Business Horizons,49(5),359-367.
  28. Kim, D.(2013).Under what conditions will social commerce business models survive?.Electronic Commerce Research and Applications,12(2),69-77.
  29. Kobsa, A.(1994).User modeling and user-adapted interaction.Conference Companion on Human Factors in Computing Systems,Boston, Massachusetts, USA:
  30. Linden, G.,Smith, B.,York, J.(2003).Amazon.com recommendations: Item-to-item collaborative filtering.Internet Computing,7(1),76-80.
  31. Lu, J.,Wu, D.,Mao, M.,Wang, W.,Zhang, G.(2015).Recommender system application developments: A survey.Decision Support Systems,74,12-32.
  32. Mladenic, D.(1999).Text-learning and related intelligent agents: A survey.IEEE Intelligent Systems,14(4),44-54.
  33. Ng, C.S.P.(2013).Intention to purchase on social commerce websites across cultures: A cross-regional study.Information & Management,50(8),609-620.
  34. Park, D.H.,Kim, H.K.,Choi, I.Y.,Kim, J.K.(2012).A literature review and classification of recommender systems research.Expert Systems with Applications,39(11),10059-10072.
  35. Park, S.T.,Chu, W.(2009).Pairwise preference regression for cold-start recommendation.Third ACM Conference on Recommender Systems,New York, USA:
  36. Quijano-Sánchez, L.,Bridge, D.,Díaz-Agudo, B.,Recio-García, J.A.(2012).A case-based solution to the cold-start problem in group recommenders.A Case-Based Reasoning Research and Development,Berlin:
  37. Rashid, A.M.,Karypis, G.,Riedl, J.(2008).Learning preferences of new users in recommender systems: An information theoretic approach.ACM SIGKDD Explorations Newsletter,10(2),90-100.
  38. Ricci, F.(Ed.),Rokach, L.(Ed.),Shapira, B.(Ed.),Kantor, Paul B.(Ed.)(2011).Recommender Systems Handbook.Berlin:Springer.
  39. Salter, J.,Antonopoulos, N.(2006).CinemaScreen recommender agent: combining collaborative and content-based filtering.Intelligent Systems,21(1),35-41.
  40. Schafer, J.B.,Frankowski, D.,Herlocker, J.,Sen, S.(2007).Collaborative filtering recommender systems.The Adaptive Web,Berlin:
  41. Schein, A.I.,Popescul, A.,Ungar, L.H.,Pennock, D.M.(2002).Methods and metrics for cold-start recommendations.25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,Tampere, Finland:
  42. Shardanand, U.,Maes, P.(1995).Social information filtering: algorithms for automating "word of mouth".SIGCHI Conference on Human Factors in Computing Systems,Denver, Colorado, USA:
  43. Shuib, N.L.M.,Baiti, N.,Normadhi, A.B.,Alias, L.F.H.B.M.,Binti, N.S.(2015).Collaborative recommender system: A review.International Conference on Advances in Computing, Electronics, and Electrical Technology,Kuala Lumpur, Malaysia:
  44. Stephen, A.T.,Toubia, O.(2009).Explaining the power-law degree distribution in a social commerce network.Social Networks,31(4),262-270.
  45. Su, X.,Khoshgoftaar, T. M.(2009).A survey of collaborative filtering techniques.Advances In Artificial Intelligence,3,1-20.
  46. Van Meteren, R.,Van Someren, M.(2000).Using content-based filtering for recommendation.Machine Learning in the New Information Age: MLnet/ECML2000 Workshop,Barcelona, Catalonia, Spain:
  47. Wang, C.,Zhang, P.(2012).The evolution of social commerce: The people, management, technology, and information dimensions.Communications of the Association for Information Systems,31(5),1-23.
  48. Yu, K.,Schwaighofer, A.,Tresp, V.,Xu, X.,Kriegel, H.P.(2004).Probabilistic memory-based collaborative filtering.Knowledge and Data Engineering,16(1),56-69.