题名

A SURVEY ON COMPREHENSIVE TRENDS IN RECOMMENDATION SYSTEMS & APPLICATIONS

DOI

10.7903/ijecs.1705

作者

Ssvr Kumar Addagarla;Anthoniraj Amalanathan

关键词

Recommendation System ; Content-Based ; Collaboration-Based ; Knowledge-Based ; Demographic ; Deep Learning ; Recommendation System Applications

期刊名称

International Journal of Electronic Commerce Studies

卷期/出版年月

10卷1期(2019 / 06 / 01)

页次

65 - 88

内容语文

英文

中文摘要

Recommendation System (RS) gains considerable popularity from the past decade in E-Commerce and other allied fields. This paper investigates the various traditional Recommendation System like Content-based (CB), Collaboration Filtering-based (CF), Demographic-based, Knowledge-based and discussed current trends in recommendation system like location-aware, context-aware, and Deep Learning techniques. Various improvements and limitations in Recommendation systems have been listed out with evolution metrics for analyzing the accuracy of the algorithms. This paper well-elaborated for the past, present and future scope of the Recommendation System which would be useful for researchers to get familiarity with this domain.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Achakulvisut, T.,Acuna, D. E.,Ruangrong, T.,Kording, K.(2016).Science concierge: A fast content-based recommendation system for scientific publications.PLOS ONE,11(7),e0158423.
  2. Adomavicius, G.,Tuzhilin, A.(2015).Context-aware recommender systems.Recommender Systems Handbook,Boston, MA:
  3. Adomavicius, G.,Tuzhilin, A.(2005).Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,17(6),734-749.
  4. Aggarwal, C. C.(2016).Knowledge-based recommender systems.Recommender Systems,167-197.
  5. Aggarwal, C.C.(2016).Content-based recommender systems.Recommender Systems,139-166.
  6. Al-Shamri, M. Y. H.(2016).User profiling approaches for demographic recommender systems.Knowledge-Based Systems,100,175-187.
  7. Balabanović, M.,Shoham, Y.(1997).Fab: content-based, collaborative recommendation.Communications of the ACM,40(3),66-72.
  8. Bobadilla, J.,Ortega, F.,Hernando, A.,Gutiérrez, A.(2013).Recommender systems survey.Knowledge-Based Systems,46,109-132.
  9. Bogárdi-Mészöly, Á.,Rövid, A.,Ishikawa, H.,Yokoyama, S.,Vámossy, Z.(2013).Tag and topic recommendation systems.Acta Polytechnica Hungarica,10(6),171-191.
  10. Burke, R.(2002).Hybrid recommender systems: Survey and experiments.User Modeling and User-Adapted Interaction,12(4),331-370.
  11. Burke, R.(2000).Knowledge-based recommender systems.Encyclopedia of Librart and Information Systems,69(Supplement 32),175-186.
  12. Campos, P. G.,Díez, F.,Cantador, I.(2014).Time-aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols.User Modeling and User-Adapted Interaction,24(1-2),67-119.
  13. Cao, Y.,Li, Y.(2007).An intelligent fuzzy-based recommendation system for consumer electronic products.Expert Systems with Applications,33(1),230-240.
  14. Chu, W.T.,Tsai, Y. L.(2017).A hybrid recommendation system considering visual information for predicting favorite restaurants.World Wide Web,20(6),1313-1331.
  15. Colombo-Mendoza, L.O.,Valencia-Garcia, R.,Rodriguez-González, A.,Alor-Hernández, G.,Samper-Zapater, J. J.(2015).RecomMetz: A contextaware knowledge-based mobile recommender system for movie showtimes.Expert Systems with Applications,42(3),1202-1222.
  16. Cremonesi, P.,Tripodi, A.,Turrin, R.(2011).Cross-domain recommender systems.IEEE 11th International Confernece on Data Mining Workshops
  17. Dang, T. A.,Viennet, E.(2013).Collaborative filtering in social networks: A community-based approach.2013 International Conference on Computing, Management and Telecommunications
  18. Davidson, J.,Liebald, B.,Liu, J.,Nandy, P.,Van Vleet, T.,Gargi, U.,Gupta, S.,He, Y.,Lambert, M.,Livingston, B.,Sampath, D.(2010).The YouTube video recommendation system.RecSys'10, Proceeding of the fourth ACM Conference Recommender Systems
  19. Desrosiers, C.,Karypis, G.(2011).A comprehensive survey of neighborhood-based recommendation methods.Recommender Systems Handbook
  20. E. Diaz-Aviles, A glimpse into deep learning for recommender Systems. Libre AI. Retrieved on August 31, 2018, from https://medium.com/@libreai/a-glimpse-into-deep-learning-for-recommender-systems-d66ae0681775.
  21. Fernández-Tobias, I.,Tomeo, P.,Cantador, I.,Di Noia, T.,Di Sciascio, E.(2016).Accuracy and diversity in cross-domain recommendations for cold-start users with positive-only feedback.RecSys'16, Proceedings of the 10th ACM Conference Recommender Systems
  22. Gabrani, G.,Sabharwal, S.,Singh, V.K.(2016).Artificial intelligence based recommender systems: A survey.Advances in Computing and Data Sciences. Communications in Computer and Information Science,Singapore:
  23. GitHub, Inc., godgetfun/RECOMMENDER-SYSTEM-FOR-ECOMMERCE-PORTAL. Retrieved on February 3, 2018, from https://github.com/godgetfun/RECOMMENDER-SYSTEM-FOR-ECOMMERCE-PORTAL.
  24. Gong, S.,Ye, H.,Tan, H.(2009).Combining memory-based and modelbased collaborative filtering in recommender system.Pacific-Asia Conference on Circuits, Communications and Systems,Chengdu, China:
  25. Guo, Y.,Wang, M.,Li, X.(2017).Application of an improved Apriori algorithm in a mobile e-commerce recommendation system.Industrial Management & Data Systems,117(2),287-303.
  26. Inc42, Battle Of The Indian Ecommerce Marketplaces - In Depth Comparison. Retrieved on January 27, 2018, from https://inc42.com/resources/ecommerce-marketplace.
  27. Jing, J.,Liu, D.,Kislyuk, D.,Zhai, A.,Xu, J.,Donahue, J.,Tavel, S.(2015).Visual Search at Pinterest.KDD'15, Proceedings of the 21th ACM SIGKDD International Conference Knowledge Discovery and Data Mining
  28. Kamath, S. S.,Kanakaraj, M.(2015).Natural language processing-based enews recommender system using information extraction and domain clustering.International Journal of Image Mining,1(1),112-125.
  29. Katarya, R.,Verma, O. P.(2017).Efficient music recommender system using context graph and particle swarm.Multimedia Tools and Applications,77(2),2673-2687.
  30. Komiya, K.,Sasaki, M.,Shinnou, H.,Kotani, Y.(2017).Cross-lingual product recommendation system using collaborative filtering.Journal of Natural Language Processing,24(4),579-596.
  31. Levandoski, J. J.,Sarwat, M.,Eldawy, A.,Mokbel, M. F.(2012).Lars: A location-aware recommender system.2012 IEEE 28th International Conference on Data Engineering
  32. Li, S.,Kawale, J, Fu, Y.(2015).Deep collaborative filtering via marginalized denoising auto-encoder.CIKM'15, Proceedings of the 24th ACM International on Conference on Information and Knowledge Management
  33. Lops, P.,De Gemmis, M.,Semeraro, G.(2011).Content-based recommender systems: State of the art and trends.Recommender Systems Handbook
  34. Lu, J.,Wu, D.,Mao, M.,Wang, W.,Zhang, G.(2015).Recommender system application developments: A survey.Decision Support Systems,74,12-32.
  35. Q. Marchena, How Natural Language Processing works - infographic. marketeer. Retrieved on August 30, 2018, from https://marketeer.co/en/blog/natural-language-processing-infographic/.
  36. Nguyen, H. T. H.,Wistuba, M.,Grabocka, J.,Drumond, L. R.,Schmidt-Thieme, L.(2017).Personalized deep learning for tag recommendation.Advances in Knowledge Discovery and Data Mining. PAKDD 2017. Lecture Notes in Computer Science,Cham:
  37. Nirenburg, S.,McShane, M.(2016).Natural language processing.The Oxford Handbook of Cognitive Science
  38. Omnicore, Linkedin by the Numbers: Stats, Demographics & Fun Facts. Retrieved on August 30, 2018, from https://www.omnicoreagency.com/linkedin-statistics.
  39. Pálovics, R.,Szalai, P.,Pap, J.,Frigó, E.,Kocsis, L.,Benczúr, A. A.(2017).Location-aware online learning for top-k recommendation.Pervasive and Mobile Computing,38,490-504.
  40. Pazzani, M. J.,Billsus, D.(2007).Content-based recommendation systems.The Adaptive Web. Lecture Notes in Computer Science,Berlin, Heidelberg:
  41. Prasad, R.,Kumari, V. V.(2012).A categorical review of recommender systems.International Journal of Distributed and Parallel Systems,3(5),73-83.
  42. Ricci, F.,Rokach, L.,Shapira, B.(2015).Recommender systems: introduction and challenges.Recommender Systems Handbook,Boston, MA:
  43. Safoury, L.,Salah, A.(2013).Exploiting user demographic attributes for solving cold-start problem in recommender system.Lecture Notes on Software Engineering,1(3),303-307.
  44. K. Saleh, Global Online Retail Spending - Statistics and Trends. invesp. Retrieved on February 3, 2018, from https://www.invespcro.com/blog/global-online-retail-spending-statistics-and-trends/
  45. Schafer, J. Ben,Frankowski, D.,Herlocker, J.,Sen, S.(2007).Collaborative filtering recommender systems.The Adaptive Web. Lecture Notes in Computer Science
  46. Shankar, D.,Narumanchi, S.,Ananya, H. A.,Kompalli, P.,Chaudhury, K.(2017).Deep learning based large scale visual recommendation and search for e-commerce.Computer Vision and Pattern Recognition
  47. sigmoidal, Recommendation Systems - How Companies are Making Money - Sigmoidal. Retrieved on August 30, 2018, from https://sigmoidal.io/recommender-systems-recommendation-engine.
  48. Singhal, A.,Sinha, P.,Pant, R.(2017).Use of deep learning in modern recommendation system: A summary of recent works.International Journal of Computer Applications,180(7),17-22.
  49. Sipper, M.,Olson, R. S.,Moore, J. H.(2017).Evolutionary computation: The next major transition of artificial intelligence?.BioData Min,10,26.
  50. statista, Digital buyers in India 2020 | Statistic. Retrieved on January 27, 2018, from https://www.statista.com/statistics/251631/number-ofdigital-buyers-in-india.
  51. Su, X.,Khoshgoftaar, T. M.(2009).A survey of collaborative filtering techniques.Advances in Artificial Intelligence,4
  52. Vozalis, M.,Margaritis, K.G.(2004).Collaborative filtering enhanced by demographic correlation.AIAI symposium on professional practice in AI of the 18th world computer congress
  53. Wang, Y.,Chan, C. F.,Ngai, G.(2012).Applicability of demographic recommender system to tourist attractions: A case study on trip advisor.IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology,United Sates:
  54. Wei, J.,He, J.,Chen, K.,Zhou, Y.,Tang, Z.(2017).Collaborative filtering and deep learning based recommendation system for cold start items.Expert Systems with Applications,69,29-39.
  55. Wikipedia, Location-based recommendation. Retrieved on January 28, 2018, from https://en.wikipedia.org/wiki/Locationbased_recommendation#Background
  56. Wu, C.,Yan, M.(2017).Session-aware information embedding for e-commerce product recommendation.CIKM'17, Proceedings of the 2017 ACM Conference on Information and Knowledge Management
  57. Xia, Y.,Di Fabbrizio, G.,Vaibhav, S.,Datta, A.(2017).A content-based recommender system for e-commerce offers and coupons.Proceedings of the SIGIR 2017 eCom workshop,Tokyo, Japan:
  58. Zhang, S.,Yao, L.,Sun, A.(2017).Deep learning based recommender system: A survey and new perspectives.ACM Computering Surveys,52(1)
  59. Zhang, S.,Zhang, S.,Yen, N. Y.,Zhu, G.(2017).The recommendation system of micro-blog topic based on user clustering.Mobile Networks and Applications,22(2),228-239.
  60. Zhao, W. X.,Li, S.,He, Y.,Wang, L.,Wen, J.-R.,Li, X.(2016).Exploring demographic information in social media for product recommendation.Knowledge and Information Systems,49(1),61-89.
  61. Zhao, X. W.,Guo, Y.,He, Y.,Jiang, H.,Wu, Y.,Li, X.(2014).We know what you want to buy: A demographic-based system for product recommendation on microblogs.Proceedings of the 20th ACM SIGKDD International conference on Knowledge discovery and data mining
  62. Ziegler, C. N.(2013).Taxonomy-driven filtering. Social Web Artifacts for Boosting Recommenders.Studies in Computational Intelligence,487,23-45.
被引用次数
  1. (2020).Fake News and Related Concepts: Definitions and Recent Research Development.Contemporary Management Research,16(3),145-174.