参考文献
|
-
Achakulvisut, T.,Acuna, D. E.,Ruangrong, T.,Kording, K.(2016).Science concierge: A fast content-based recommendation system for scientific publications.PLOS ONE,11(7),e0158423.
-
Adomavicius, G.,Tuzhilin, A.(2015).Context-aware recommender systems.Recommender Systems Handbook,Boston, MA:
-
Adomavicius, G.,Tuzhilin, A.(2005).Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,17(6),734-749.
-
Aggarwal, C. C.(2016).Knowledge-based recommender systems.Recommender Systems,167-197.
-
Aggarwal, C.C.(2016).Content-based recommender systems.Recommender Systems,139-166.
-
Al-Shamri, M. Y. H.(2016).User profiling approaches for demographic recommender systems.Knowledge-Based Systems,100,175-187.
-
Balabanović, M.,Shoham, Y.(1997).Fab: content-based, collaborative recommendation.Communications of the ACM,40(3),66-72.
-
Bobadilla, J.,Ortega, F.,Hernando, A.,Gutiérrez, A.(2013).Recommender systems survey.Knowledge-Based Systems,46,109-132.
-
Bogárdi-Mészöly, Á.,Rövid, A.,Ishikawa, H.,Yokoyama, S.,Vámossy, Z.(2013).Tag and topic recommendation systems.Acta Polytechnica Hungarica,10(6),171-191.
-
Burke, R.(2002).Hybrid recommender systems: Survey and experiments.User Modeling and User-Adapted Interaction,12(4),331-370.
-
Burke, R.(2000).Knowledge-based recommender systems.Encyclopedia of Librart and Information Systems,69(Supplement 32),175-186.
-
Campos, P. G.,Díez, F.,Cantador, I.(2014).Time-aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols.User Modeling and User-Adapted Interaction,24(1-2),67-119.
-
Cao, Y.,Li, Y.(2007).An intelligent fuzzy-based recommendation system for consumer electronic products.Expert Systems with Applications,33(1),230-240.
-
Chu, W.T.,Tsai, Y. L.(2017).A hybrid recommendation system considering visual information for predicting favorite restaurants.World Wide Web,20(6),1313-1331.
-
Colombo-Mendoza, L.O.,Valencia-Garcia, R.,Rodriguez-González, A.,Alor-Hernández, G.,Samper-Zapater, J. J.(2015).RecomMetz: A contextaware knowledge-based mobile recommender system for movie showtimes.Expert Systems with Applications,42(3),1202-1222.
-
Cremonesi, P.,Tripodi, A.,Turrin, R.(2011).Cross-domain recommender systems.IEEE 11th International Confernece on Data Mining Workshops
-
Dang, T. A.,Viennet, E.(2013).Collaborative filtering in social networks: A community-based approach.2013 International Conference on Computing, Management and Telecommunications
-
Davidson, J.,Liebald, B.,Liu, J.,Nandy, P.,Van Vleet, T.,Gargi, U.,Gupta, S.,He, Y.,Lambert, M.,Livingston, B.,Sampath, D.(2010).The YouTube video recommendation system.RecSys'10, Proceeding of the fourth ACM Conference Recommender Systems
-
Desrosiers, C.,Karypis, G.(2011).A comprehensive survey of neighborhood-based recommendation methods.Recommender Systems Handbook
-
E. Diaz-Aviles, A glimpse into deep learning for recommender Systems. Libre AI. Retrieved on August 31, 2018, from https://medium.com/@libreai/a-glimpse-into-deep-learning-for-recommender-systems-d66ae0681775.
-
Fernández-Tobias, I.,Tomeo, P.,Cantador, I.,Di Noia, T.,Di Sciascio, E.(2016).Accuracy and diversity in cross-domain recommendations for cold-start users with positive-only feedback.RecSys'16, Proceedings of the 10th ACM Conference Recommender Systems
-
Gabrani, G.,Sabharwal, S.,Singh, V.K.(2016).Artificial intelligence based recommender systems: A survey.Advances in Computing and Data Sciences. Communications in Computer and Information Science,Singapore:
-
GitHub, Inc., godgetfun/RECOMMENDER-SYSTEM-FOR-ECOMMERCE-PORTAL. Retrieved on February 3, 2018, from https://github.com/godgetfun/RECOMMENDER-SYSTEM-FOR-ECOMMERCE-PORTAL.
-
Gong, S.,Ye, H.,Tan, H.(2009).Combining memory-based and modelbased collaborative filtering in recommender system.Pacific-Asia Conference on Circuits, Communications and Systems,Chengdu, China:
-
Guo, Y.,Wang, M.,Li, X.(2017).Application of an improved Apriori algorithm in a mobile e-commerce recommendation system.Industrial Management & Data Systems,117(2),287-303.
-
Inc42, Battle Of The Indian Ecommerce Marketplaces - In Depth Comparison. Retrieved on January 27, 2018, from https://inc42.com/resources/ecommerce-marketplace.
-
Jing, J.,Liu, D.,Kislyuk, D.,Zhai, A.,Xu, J.,Donahue, J.,Tavel, S.(2015).Visual Search at Pinterest.KDD'15, Proceedings of the 21th ACM SIGKDD International Conference Knowledge Discovery and Data Mining
-
Kamath, S. S.,Kanakaraj, M.(2015).Natural language processing-based enews recommender system using information extraction and domain clustering.International Journal of Image Mining,1(1),112-125.
-
Katarya, R.,Verma, O. P.(2017).Efficient music recommender system using context graph and particle swarm.Multimedia Tools and Applications,77(2),2673-2687.
-
Komiya, K.,Sasaki, M.,Shinnou, H.,Kotani, Y.(2017).Cross-lingual product recommendation system using collaborative filtering.Journal of Natural Language Processing,24(4),579-596.
-
Levandoski, J. J.,Sarwat, M.,Eldawy, A.,Mokbel, M. F.(2012).Lars: A location-aware recommender system.2012 IEEE 28th International Conference on Data Engineering
-
Li, S.,Kawale, J, Fu, Y.(2015).Deep collaborative filtering via marginalized denoising auto-encoder.CIKM'15, Proceedings of the 24th ACM International on Conference on Information and Knowledge Management
-
Lops, P.,De Gemmis, M.,Semeraro, G.(2011).Content-based recommender systems: State of the art and trends.Recommender Systems Handbook
-
Lu, J.,Wu, D.,Mao, M.,Wang, W.,Zhang, G.(2015).Recommender system application developments: A survey.Decision Support Systems,74,12-32.
-
Q. Marchena, How Natural Language Processing works - infographic. marketeer. Retrieved on August 30, 2018, from https://marketeer.co/en/blog/natural-language-processing-infographic/.
-
Nguyen, H. T. H.,Wistuba, M.,Grabocka, J.,Drumond, L. R.,Schmidt-Thieme, L.(2017).Personalized deep learning for tag recommendation.Advances in Knowledge Discovery and Data Mining. PAKDD 2017. Lecture Notes in Computer Science,Cham:
-
Nirenburg, S.,McShane, M.(2016).Natural language processing.The Oxford Handbook of Cognitive Science
-
Omnicore, Linkedin by the Numbers: Stats, Demographics & Fun Facts. Retrieved on August 30, 2018, from https://www.omnicoreagency.com/linkedin-statistics.
-
Pálovics, R.,Szalai, P.,Pap, J.,Frigó, E.,Kocsis, L.,Benczúr, A. A.(2017).Location-aware online learning for top-k recommendation.Pervasive and Mobile Computing,38,490-504.
-
Pazzani, M. J.,Billsus, D.(2007).Content-based recommendation systems.The Adaptive Web. Lecture Notes in Computer Science,Berlin, Heidelberg:
-
Prasad, R.,Kumari, V. V.(2012).A categorical review of recommender systems.International Journal of Distributed and Parallel Systems,3(5),73-83.
-
Ricci, F.,Rokach, L.,Shapira, B.(2015).Recommender systems: introduction and challenges.Recommender Systems Handbook,Boston, MA:
-
Safoury, L.,Salah, A.(2013).Exploiting user demographic attributes for solving cold-start problem in recommender system.Lecture Notes on Software Engineering,1(3),303-307.
-
K. Saleh, Global Online Retail Spending - Statistics and Trends. invesp. Retrieved on February 3, 2018, from https://www.invespcro.com/blog/global-online-retail-spending-statistics-and-trends/
-
Schafer, J. Ben,Frankowski, D.,Herlocker, J.,Sen, S.(2007).Collaborative filtering recommender systems.The Adaptive Web. Lecture Notes in Computer Science
-
Shankar, D.,Narumanchi, S.,Ananya, H. A.,Kompalli, P.,Chaudhury, K.(2017).Deep learning based large scale visual recommendation and search for e-commerce.Computer Vision and Pattern Recognition
-
sigmoidal, Recommendation Systems - How Companies are Making Money - Sigmoidal. Retrieved on August 30, 2018, from https://sigmoidal.io/recommender-systems-recommendation-engine.
-
Singhal, A.,Sinha, P.,Pant, R.(2017).Use of deep learning in modern recommendation system: A summary of recent works.International Journal of Computer Applications,180(7),17-22.
-
Sipper, M.,Olson, R. S.,Moore, J. H.(2017).Evolutionary computation: The next major transition of artificial intelligence?.BioData Min,10,26.
-
statista, Digital buyers in India 2020 | Statistic. Retrieved on January 27, 2018, from https://www.statista.com/statistics/251631/number-ofdigital-buyers-in-india.
-
Su, X.,Khoshgoftaar, T. M.(2009).A survey of collaborative filtering techniques.Advances in Artificial Intelligence,4
-
Vozalis, M.,Margaritis, K.G.(2004).Collaborative filtering enhanced by demographic correlation.AIAI symposium on professional practice in AI of the 18th world computer congress
-
Wang, Y.,Chan, C. F.,Ngai, G.(2012).Applicability of demographic recommender system to tourist attractions: A case study on trip advisor.IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology,United Sates:
-
Wei, J.,He, J.,Chen, K.,Zhou, Y.,Tang, Z.(2017).Collaborative filtering and deep learning based recommendation system for cold start items.Expert Systems with Applications,69,29-39.
-
Wikipedia, Location-based recommendation. Retrieved on January 28, 2018, from https://en.wikipedia.org/wiki/Locationbased_recommendation#Background
-
Wu, C.,Yan, M.(2017).Session-aware information embedding for e-commerce product recommendation.CIKM'17, Proceedings of the 2017 ACM Conference on Information and Knowledge Management
-
Xia, Y.,Di Fabbrizio, G.,Vaibhav, S.,Datta, A.(2017).A content-based recommender system for e-commerce offers and coupons.Proceedings of the SIGIR 2017 eCom workshop,Tokyo, Japan:
-
Zhang, S.,Yao, L.,Sun, A.(2017).Deep learning based recommender system: A survey and new perspectives.ACM Computering Surveys,52(1)
-
Zhang, S.,Zhang, S.,Yen, N. Y.,Zhu, G.(2017).The recommendation system of micro-blog topic based on user clustering.Mobile Networks and Applications,22(2),228-239.
-
Zhao, W. X.,Li, S.,He, Y.,Wang, L.,Wen, J.-R.,Li, X.(2016).Exploring demographic information in social media for product recommendation.Knowledge and Information Systems,49(1),61-89.
-
Zhao, X. W.,Guo, Y.,He, Y.,Jiang, H.,Wu, Y.,Li, X.(2014).We know what you want to buy: A demographic-based system for product recommendation on microblogs.Proceedings of the 20th ACM SIGKDD International conference on Knowledge discovery and data mining
-
Ziegler, C. N.(2013).Taxonomy-driven filtering. Social Web Artifacts for Boosting Recommenders.Studies in Computational Intelligence,487,23-45.
|