题名

Single Stage Deep Transfer Learning Model for Apparel Detection and Classification for E-Commerce

DOI

10.7903/ijecs.1953

作者

Ssvr Kumar Addagarla;Anthoniraj Amalanathan

关键词

Custom Object Detection ; Yolov3 ; Spatial pyramid pooling ; Color Space ; Apparel detection

期刊名称

International Journal of Electronic Commerce Studies

卷期/出版年月

13卷1期(2022 / 03 / 01)

页次

69 - 92

内容语文

英文

中文摘要

Although many computer vision-based object detection techniques have evolved in the past decade, it suffers from inconsistent detection accuracy, especially for multiclass classification problems. This paper proposed an approach using the Single Stage Deep Transfer Learning model (SS-DTLM) for multiclass apparel detection using a customized YoloV3 algorithm by adapting 3-level Spatial pyramid pooling (SPP), a multi-scale image feature extractor for faster and reasonable apparel detection and classification. This approach produced a reasonable Mean Average Precision (mAP), reliable object detection, and classification. Our model trained and tested on Open Images Dataset (OIDV4) with six object classes and Custom built Apparel Dataset with five object classes of apparels. Finally, experimental results compared with baseline Yolov3 and Yolov3-Tiny algorithms. Further, this paper also emphasized the detected image's various color spaces using SS-DTLM by applying the K-Means clustering algorithm for further analysis.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. “eCommerce - Asia | Statista Market Forecast,” 2020. [Online]. Available: https://www.statista.com/outlook/243/101/ecommerce/asia. [Accessed: 02-Feb2020].
  2. Abiodun, O. I.,Jantan, A.,Omolara, A. E.,Dada, K. V.,Mohamed, N. A.,Arshad, H.(2018).State-of-the-art in artificial neural network applications: A survey.Heliyon,4(11),e00938.
  3. Alsmadi, M. K.,Omar, K. B.,Noah, S. A.,Almarashdeh, I.(2010).Fish recognition based on robust features extraction from size and shape measurements using neural network.J. Comput. Sci.,6(10),1088.
  4. Beale, H. D.,Demuth, H. B.,Hagan, M. T.(1996).Neural network design.Pws, Bost..
  5. Bossard, L.,Dantone, M.,Leistner, C.,Wengert, C.,Quack, T.,Van Gool, L.(2012).Apparel classification with style.Asian conference on computer vision,Berlin:
  6. Chen, J.-C.,Liu, C.-F.(2015).Visual-based deep learning for clothing from large database.Proceedings of the ASE BigData & SocialInformatics
  7. Chollet, F.(2017).Xception: Deep Learning with Depthwise Separable Convolutions.2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),HI, USA:
  8. Dai, J.,Li, Y.,He, K.,Sun, J.(2016).R-FCN: Object detection via region-based fully convolutional networks.Adv. Neural Inf. Process. Syst.,379-387.
  9. Dalal, N.,Triggs, B.(2005).Histograms of oriented gradients for human detection.2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05)
  10. Duan, M.,Li, K.,Yang, C.,Li, K.(2018).A hybrid deep learning cnn–elm for age and gender classification.Neurocomputing,275,448-461.
  11. Erhan, D.,Szegedy, C.,Toshev, A.,Anguelov, D.(2014).Scalable object detection using deep neural networks.Proceedings of the IEEE conference on computer vision and pattern recognition
  12. Eshwar, S. G.,Rishikesh, A. V,Charan, N. A.,Umadevi, V.(2016).Apparel classification using convolutional neural networks.2016 International Conference on ICT in Business Industry & Government (ICTBIG),Indore, India:
  13. Fu, C.-Y.,Liu, W.,Ranga, A.,Tyagi, A.,Berg, A. C.(2017).,未出版
  14. Giri, C.,Jain, S.,Zeng, X.,Bruniaux, P.(2019).A detailed review of artificial intelligence applied in the fashion and apparel industry.IEEE Access
  15. Girshick, R.(2015).Fast r-cnn.Proc. IEEE Int. Conf. Comput. Vis.
  16. Girshick, R.,Donahue, J.,Darrell, T.,Malik, J.(2014).Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.2014 IEEE Conference on Computer Vision and Pattern Recognition
  17. Goodfellow, I.,Bengio, Y.,Courville, A.(2016).Deep learning.MIT press.
  18. Graves, A.,Schmidhuber, J.(2008).Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks.Advances in Neural Information Processing Systems,21,545-552.
  19. Hara, K.,Jagadeesh, V.,Piramuthu, R.(2016).Fashion apparel detection: The role of deep convolutional neural network and pose-dependent priors.2016 IEEE Winter Conference on Applications of Computer Vision (WACV)
  20. Hassoun, M. H.(1995).Fundamentals of artificial neural networks.MIT press.
  21. He, K.,Gkioxari, G.,Dollár, P.,Girshick, R.(2017).Mask r-cnn.Proceedings of the IEEE international conference on computer vision
  22. He, K.,Zhang, X.,Ren, S.,Sun, J.(2016).Deep residual learning for image recognition.2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),HI, USA:
  23. He, K.,Zhang, X.,Ren, S.,Sun, J.(2015).Spatial pyramid pooling in deep convolutional networks for visual recognition.IEEE Trans. Pattern Anal. Mach. Intell.,37(9),1904-1916.
  24. He, K.,Zhang, X.,Ren, S.,Sun, J.(2016).Deep residual learning for image recognition.Proceedings of the IEEE conference on computer vision and pattern recognition,NV, USA:
  25. Khan, A.,Sohail, A.,Zahoora, U.,Qureshi, A. S.(2019).,未出版
  26. Kiadtikornthaweeyot, W.,Tatnall, A. R. L.(2016).Region of interest detection based on histogram segmentation for satellite image.Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch.,41,249-255.
  27. Krizhevsky, A.,Sutskever, I.,Hinton, G. E.(2012).Imagenet classification with deep convolutional neural networks.Advances in neural information processing systems,1097-1105.
  28. Kuznetsova, A.,Rom, H.,Alldrin, N.,Uijlings, J.,Krasin, I.,Pont-Tuset, J.,Kamali, S.,Popov, S.,Malloci, M.,Kolesnikov, A.,Duerig, T.,Ferrari, V.(2020).The open images dataset v4.International Journal of Computer Vision,128(7),1956-1981.
  29. Lao, B.,Jagadeesh, K.(2015).Convolutional neural networks for fashion classification and object detection.CCCV 2015 Comput. Vis.
  30. LeCun, Y.,Bengio, Y.,Hinton, G.(2015).Deep learning.Nature,521(7553),436-444.
  31. LeCun, Y.,Bottou, L.,Bengio, Y.,Haffner, P.(1998).Gradient-based learning applied to document recognition.Proc. IEEE,86(11),2278-2324.
  32. Li, S. Z.(2011).Handbook of face recognition.London, UK:Springer-Verlag.
  33. Lin, T.-Y.,Dollár, P.,Girshick, R.,He, K.,Hariharan, B.,Belongie, S.(2017).Feature pyramid networks for object detection.Proceedings of the IEEE conference on computer vision and pattern recognition
  34. Liu, W.(2016).Ssd: Single shot multibox detector.European conference on computer vision
  35. Lops, P.,de Gemmis, M.,Semeraro, G.(2010).Content-based recommender SYSTEMS: State of the art and trends.Recommender Systems Handbook
  36. Ma, H.,Liu, Y.,Ren, Y.,Yu, J.(2020).Detection of collapsed buildings in post-earthquake remote sensing images based on the improved yolov3.Remote Sens.,12(1),44.
  37. Maji, S.,Malik, J.(2009).Object detection using a max-margin hough transform.2009 IEEE Conference on Computer Vision and Pattern Recognition
  38. Redmon, J.,Divvala, S.,Girshick, R.,Farhadi, A.(2016).You only look once: Unified, real-time object detection.Proceedings of the IEEE conference on computer vision and pattern recognition
  39. Redmon, J.,Farhadi, A.(2017).YOLO9000: better, faster, stronger.Proceedings of the IEEE conference on computer vision and pattern recognition
  40. Redmon, J.,Farhadi, A.(2018).,未出版
  41. Ren, S.,He, K.,Girshick, R.,Sun, J.(2015).Faster r-cnn: Towards real-time object detection with region proposal networks.Advances in neural information processing systems,91-99.
  42. Rezatofighi, H.,Tsoi, N.,Gwak, J.,Sadeghian, A.,Reid, I.,Savarese, S.(2019).Generalized intersection over union: A metric and a loss for bounding box regression.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  43. A. Rosebrock, “Intersection over Union (IoU) for object detection,” Diambil kembali dari PYImageSearch [Online]. Available: https//www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection, 2016.
  44. Schindler, A.,Lidy, T.,Karner, S.,Hecker, M.(2018).,未出版
  45. Selvin, S.,Vinayakumar, R.,Gopalakrishnan, E. A.,Menon, V. K.,Soman, K. P.(2017).Stock price prediction using lstm, rnn and cnn-sliding window model.2017 international conference on advances in computing, communications and informatics (icacci)
  46. Seo, Y.,Shin, K.(2019).Hierarchical convolutional neural networks for fashion image classification.Expert Syst. Appl.,116,328-339.
  47. Simonyan, K.,Zisserman, A.(2014).,未出版
  48. Sinha, P.,Balas, B.,Ostrovsky, Y.,Russell, R.(2006).Face recognition by humans: Nineteen results all computer vision researchers should know about.Proc. IEEE,94(11),1948-1962.
  49. Szegedy, C.(2015).Going deeper with convolutions.Proceedings of the IEEE conference on computer vision and pattern recognition,HI, USA:
  50. Szegedy, C.,Toshev, A.,Erhan, D.(2013).Deep Neural Networks for Object Detection.Advances in Neural Information Processing Systems,26,2553-2561.
  51. Szegedy, C.,Vanhoucke, V.,Ioffe, S.,Shlens, J.,Wojna, Z.(2016).Rethinking the Inception Architecture for Computer Vision.2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),HI, USA:
  52. Viola, P.,Jones, M.(2001).Rapid object detection using a boosted cascade of simple features.CVPR,1(511-518),3.
  53. Wang, X.,Han, T. X.,Yan, S.(2009).An HOG-LBP human detector with partial occlusion handling.2009 IEEE 12th international conference on computer vision
  54. Wei, J.,He, J.,Chen, K.,Zhou, Y.,Tang, Z.(2017).Collaborative filtering and deep learning based recommendation system for cold start items.Expert Syst. Appl.,69,29-39.
  55. Womg, A.,Shafiee, M. J.,Li, F.,Chwyl, B.(2018).Tiny SSD: A tiny single-shot detection deep convolutional neural network for real-time embedded object detection.2018 15th Conference on Computer and Robot Vision (CRV)
  56. Wu, S. G.,Bao, F. S.,Xu, E. Y.,Wang, Y.-X.,Chang, Y.-F.,Xiang, Q.-L.(2007).A leaf recognition algorithm for plant classification using probabilistic neural network.2007 IEEE international symposium on signal processing and information technology
  57. Xiao, H.,Rasul, K.,Vollgraf, R.(2017).,未出版
  58. Xie, S.,Girshick, R.,Dollár, P.,Tu, Z.,He, K.(2017).Aggregated Residual Transformations for Deep Neural Networks.2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),HI, USA:
  59. Xie, S.,Girshick, R.,Dollár, P.,Tu, Z.,He, K.(2017).Aggregated residual transformations for deep neural networks.Proceedings of the IEEE conference on computer vision and pattern recognition
  60. Yi, Z.,Yongliang, S.,Jun, Z.(2019).An improved tiny-yolov3 pedestrian detection algorithm.Optik (Stuttg).,183,17-23.
  61. Zhang, P.,Zhong, Y.,Li, X.(2019).SlimYOLOv3: Narrower, Faster and Better for Real-Time UAV Applications.Proceedings of the IEEE International Conference on Computer Vision Workshops
  62. Zhao, Z.-Q.,Zheng, P.,Xu, S.,Wu, X.(2019).Object detection with deep learning: A review.IEEE Trans. neural networks Learn. Syst.,30(1),3212-3232.
  63. Zoghbi, S.,Heyman, G.,Gomez, J. C.,Moens, M.-F.(2016).Fashion meets computer vision and nlp at e-commerce search.Int. J. Comput. Electr. Eng.,8(1),31-43.