题名

非法藥物奈米探針之回顧

并列篇名

Review of Nanoprobes for Screening of Abused Drugs

DOI

10.6134/tjfm.201806_10(1).0001

作者

顏堯德(Yao-Te Yen);陳庭悅(Ting-Yueh Chen);闕山仲(Sun-Chong Chyue);張煥宗(Huan-Tsung Chang)

关键词

奈米探針 ; 光學感測器 ; 非法藥物 ; 篩驗 ; Nanoprobe ; Optical Sensor ; Abused Drug ; Screening

期刊名称

台灣法醫學誌

卷期/出版年月

9卷2期&10卷1期(2018 / 06 / 01)

页次

1 - 13

内容语文

繁體中文

中文摘要

快篩濫用藥物的分析技術有助於法務人員來判定是否具有非法持有、吸食或其他等犯罪行為,因此相關技術的開發極為重要。具有極高的吸收係數和量子產率的奈米材料已被開發成可靈敏地檢測各種分析物的光學感測器。為增加選擇性,可辨識濫用藥物之deoxyribonucleic acid(DNA)適體常用於修飾奈米材料。本文介紹應用於檢測可待因、古柯鹼、甲基安非他命、愷他命、氯硝西泮及4-氯乙基卡西酮等濫用藥物的奈米探針,以奈米金、銀奈米團簇、半導體量子點及碳量子點等材料為主。雖然這些探針具有靈敏和選擇性等優點,但其仍無法檢測許多新興濫用藥物且受基質干擾,故發展適於快篩濫用藥物的便宜及新型奈米探針仍有其迫切性。

英文摘要

To assist law officers to determine whether the behavior of illegal possession, use of abused drugs, and criminal's acts occur or not, it is extremely important to develop analytical techniques for screening of abused drugs. Nanomaterials having high molar absorption coefficients and quantum yields have been used to develop optical sensors for quantitation of various analytes, with advantages of high sensitivity. deoxyribonucleic acid (DNA) aptamers are commonly used to functionalize the nanomaterial to enhance their selectivity towards abused drugs. This review article focuses on introduction of gold nanoparticles, silver nanoclusters, quantum dots, and carbon nanodots based nanoprobes for detection of abused drugs, including codeine, cocaine, methamphetamine, ketamine, clonazepam, and 4-chloroethcathinone. Although they are sensitive and selective, they can not be used for screening newly developed abused drugs and suffer from matrix interference. It is thus important to develop new and low-cost sensors for rapid screening of abused drugs.

主题分类 醫藥衛生 > 基礎醫學
社會科學 > 法律學
参考文献
  1. Yen YT, Lin YS, Chang HT: Sensing paper and method of sensing abused drugs. U.S. Patent 31561,7590, May 24, 2018.
  2. Balogun, MS,Luo, Y,Lyu, F(2016).Carbon quantum dot surface-engineered VO2 interwoven nanowires: a flexible cathode material for lithium and sodium ion batteries.ACS Appl Mater Interfaces,8,9733-44.
  3. Barsan, MM,Ghica, ME,Brett, CM(2015).Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.Anal Chim Acta,881,1-23.
  4. Cao, Z,Kaleta, E,Wang, P(2015).Simultaneous quantitation of 78 drugs and metabolites in urine with a dilute-and-shoot LC-MS-MS assay.J Anal Toxicol,39,335-46.
  5. Chantada-Vázquez, MP,Sánchez-González, J,Peña-Vázquez, E(2016).Simple and sensitive molecularly imprinted polymer-Mn-doped ZnS quantum dots based fluorescence probe for cocaine and metabolites determination in urine.Anal Chem,88,2734-41.
  6. Chen, LY,Wang, CW,Yuan, Z,Chang, HT(2015).Fluorescent gold nanoclusters: recent advances in sensing and imaging.Anal Chem,87,216-29.
  7. Chen, PC,Li, YC,Ma, JY,Huang, JY,Chen, CF,Chang, HT(2016).Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices.Sci Rep,6,24882-91.
  8. Chen, PC,Periasamy, AP,Harroun, SG,Wu, WP,Chang, HT(2016).Photoluminescence sensing systems based on copper, gold and silver nanomaterials.Coord Chem Rev,320,129-38.
  9. Ding, Y,Li, X,Guo, Y(2017).Rapid and sensitive detection of ketamine in blood using novel fluorescence genosensor.Anal Bioanal Chem,409,7027-34.
  10. Fahimi-Kashani, N,Hormozi-Nezhad, MR(2018).Gold nanorod-based chrono-colorimetric sensor arrays: a promising platform for chemical discrimination applications.ACS Omega,3,1386-94.
  11. Feng, T,Ai, X,An, G,Yang, P,Zhao, Y(2016).Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency.ACS Nano,10,4410-20.
  12. Fu, Y,Shi, L,Zhu, D(2013).Fluorene-thiophene-based thin-film fluorescent chemosensor for methamphetamine vapor by thiophene-amine interaction.Sens Actuators B Chem,180,2-7.
  13. He, M,Li, Z,Ge, Y,Liu, Z(2016).Portable upconversion nanoparticles-based paper device for field testing of drug abuse.Anal Chem,88,1530-4.
  14. Hola, K,Zhang, Y,Wang, Y,Giannelis, EP,Zboril, R,Rogach, AL(2014).Carbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronics.Nano Today,9,590-603.
  15. Huang, CC,Huang, YF,Cao, Z,Tan, W,Chang, HT(2005).Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors.Anal Chem,77,5735-41.
  16. Huang, CC,Yang, Z,Lee, KH,Chang, HT(2007).Synthesis of highly fluorescent gold nanoparticles for sensing mercury (II).Angew Chem Int Ed Engl,46,6824-8.
  17. Lad, AN,Pandya, A,Agrawal, YK(2016).Overview of nano-enabled screening of drug-facilitated crime: a promising tool in forensic investigation.Trends Analyt Chem,80,458-70.
  18. Liu, J,Lu, Y(2005).Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles.Angew Chem Int Ed Engl,45,90-4.
  19. Lodha, A,Pandya, A,Sutariya, PG,Menon, SK(2014).A smart and rapid colorimetric method for the detection of codeine sulphate, using unmodified gold nanoprobe.RSC Adv,4,50443-8.
  20. Lodha, A,Pandya, A,Sutariya, PG,Menon, SK(2013).Melamine modified gold nanoprobe for "on-spot" colorimetric recognition of clonazepam from biological specimens.Analyst,138,5411-6.
  21. Medina-Sánchez, M,Miserere, S,Merkoçi, A(2012).Nanomaterials and lab-on-a-chip technologies.Lab Chip,12,1932-43.
  22. Muccio, Z,Jackson, GP(2009).Isotope ratio mass spectrometry.Analyst,134,213-22.
  23. Patolsky, F,Lieber, CM(2005).Nanowire nanosensors.Mater Today,8,20-8.
  24. Rouhani, S,Haghgoo, S(2015).A novel fluorescence nanosensor based on 1,8-naphthalimide-thiophene doped silica nanoparticles, and its application to the determination of methamphetamine.Sens Actuators B Chem,209,957-65.
  25. Roy, P,Chen, PC,Periasamy, AP,Chen, YN,Chang, HT(2015).Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications.Mater Today,18,447-58.
  26. Scanlon, MD,Smirnov, E,Stockmann, TJ,Peljo, P(2018).Gold nanofilms at liquid-liquid interfaces: an emerging platform for redox electrocatalysis, nanoplasmonic sensors, and electrovariable optics.Chem Rev,118,3722-51.
  27. Siddiqui, MR,AlOthman, ZA,Rahman, N(2017).Analytical techniques in pharmaceutical analysis: A review.Arab J Chem,10(Suppl 1),S1409-21.
  28. Tsai, TT,Huang, CY,Chen, CA(2017).Diagnosis of tuberculosis using colorimetric gold nanoparticles on a paper-based analytical device.ACS Sens,2,1345-54.
  29. United Nations Office on Drugs and Crime(2017).World Drug Report 2017.Vienna:Vienna United Nations.
  30. Wang, C,Astruc, D(2014).Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion.Chem Soc Rev,43,7188-216.
  31. Wang, CI,Wu, WC,Periasamy, AP,Chang, HT(2014).Electrochemical synthesis of photoluminescent carbon nanodots from glycine for highly sensitive detection of hemoglobin.Green Chem,16,2509-14.
  32. Yuan, Z,Du, Y,Tseng, YT(2015).Fluorescent gold nanodots based sensor array for proteins discrimination.Anal Chem,87,4253-9.
  33. Zhang, CY,Johnson, LW(2009).Single quantum-dot-based aptameric nanosensor for cocaine.Anal Chem,81,3051-5.
  34. Zhang, J,Cheng, F,Li, J,Zhu, JJ,Lu, Y(2016).Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives.Nano Today,11,309-29.
  35. Zhang, Q,Huang, JQ,Qian, WZ,Zhang, YY,Wei, F(2013).The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage.Small,9,1237-65.