题名

紙張分析平台應用於免疫檢測之開發

并列篇名

Paper-Based Analytical Devices for Portable Immunoassay Applications

DOI

10.6134/tjfm.201806_10(1).0002

作者

董至舜(Zhi-Shun Dong);陳世杰(Shih-Jie Chen);葉玟妡(Wen-Shin Yeh);陳俊安(Chung-An Chen);陳建甫(Chien-Fu Chen)

关键词

紙張分析平台 ; 免疫分析 ; 人類免疫球蛋白G ; Origami Paper-Based Analytical Device ; Immunoassay ; Biosensor

期刊名称

台灣法醫學誌

卷期/出版年月

9卷2期&10卷1期(2018 / 06 / 01)

页次

14 - 24

内容语文

繁體中文

中文摘要

本研究提出一新型三紙張分析平台應用於免疫檢測,可以透過簡單蠟製程及摺疊紙張之方式完成平台製作。檢測設計以直流式免疫分析法達到縮減流體路徑以減少無效體積的目的,並且結合滑動紙張之設計減少使用者操作步驟。本平台整體全部由層析紙構成,為了達到抗體以穩定共價鍵結方式固定在紙張表面,吾人於偵測區域進行羧甲基纖維素(carboxymethyl cellulose, CMC)與1-(3-二甲氨基丙基)-3-乙基碳二亞胺鹽酸鹽(N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride, EDC)/N-羥基丁二醯胺(N-hydroxysuccinimde, NHS)紙張表面處理,以取代昂貴的硝化纖維膜,提升平台的專一性。此外,本研究將抗體加入蔗糖與海藻糖作為穩定劑並以冷凍乾燥方式保存於層析紙上,增加平台的可攜性及延長抗體的有效期限。經實驗結果證實本平台進行人類免疫球蛋白G測試,僅需3 μL樣品即可獲得偵測極限為0.1 ng/mL,並可在7分鐘內得知檢測結果,此檢測裝置可在冷藏4°C下長效保存75天,達到製程簡單、操作步驟簡易、所需樣品量少、具靈敏度、檢測時間短之快速篩檢的目的,可預期此研究將來可簡單擴充至其他疾病檢測。

英文摘要

We successfully demonstrate a novel three-dimesnional (3D) origami paper-based analytical device (oPAD) for immunoassay applications. By combining surface modification of the cellulose paper and the slip design, users can easily perform immunoassay in rapid and stable manners. Costly nitrocellulose membrane for affinity biorecognition molecules covalently conjugated is replaced using carboxymethyl cellulose (CMC), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimde (NHS) modified cellulose paper. In addition, biorecognition molecules are lyophilized to extend the lifetime and portability of the device during storage and transportation. The results showed that anti-human immunoglobulin G (IgG) conjugates horseradish peroxidase (HRP) dried in a variety of sugar matrices retained 80% of their activity after 75 days of storage at 4°C. The detection limit of 3D origami paper-based analytical device for human IgG is 0.1 ng/mL, and the assay results could be visualized in 7 min.

主题分类 醫藥衛生 > 基礎醫學
社會科學 > 法律學
参考文献
  1. Allison, SD,Manning, MC,Randolph, TW,Middleton, K,Davis, A,Carpenter, JF(2000).Optimization of storage stability of lyophilized actin using combinations of disaccharides and dextran.J Pharm Sci,89,199-214.
  2. Carpenter, JF,Arakawa, T,Crowe, JH(1991).Interactions of stabilizing additives with proteins during freeze-thawing and freeze-drying.Dev Biol Stand,74,225-39.
  3. Carpenter, JF,Pikal, MJ,Chang, BS,Randolph, TW(1997).Rational design of stable lyophilized protein formulations: some practical advice.Pharm Res,14,969-75.
  4. Carrilho, E,Martinez, AW,Whitesides, GM(2009).Understanding wax printing: a simple micropatterning process for paper-based microfluidics.Anal Chem,81,7091-5.
  5. Chang, L,Shepherd, D,Sun, J(2005).Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix?.J Pharm Sci,94,1427-44.
  6. Cheng, CM,Martinez, AW,Gong, J(2010).Paperbased ELISA.Angew Chem Int Ed Engl,49,4771-4.
  7. Ellerbee, AK,Phillips, ST,Siegel, AC(2009).Quantifying colorimetric assays in paperbased microfluidic devices by measuring the transmission of light through paper.Anal Chem,81,8447-52.
  8. Ge, L,Wang, S,Song, X,Ge, S,Yu, J(2012).3D origamibased multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device.Lab Chip,12,3150-8.
  9. Han, KN,Choi, JS,Kwon, J(2016).Three-dimensional paper-based slip device for one-step point-of-care testing.Sci Rep,6,25710.
  10. He, Q,Ma, C,Hu, X,Chen, H(2013).Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning.Anal Chem,85,1327-31.
  11. Jin, SQ,Guo, SM,Zuo, P,Ye, BC(2015).A cost-effective Z-folding controlled liquid handling microfluidic paper analysis device for pathogen detection via ATP quantification.Biosens Bioelectron,63,379-83.
  12. Li, X,Tian, J,Nguyen, T,Shen, W(2008).Paper-based microfluidic devices by plasma treatment.Anal Chem,80,9131-4.
  13. Martinez, AW,Phillips, ST,Butte, MJ,Whitesides, GM(2007).Patterned paper as a platform for inexpensive, low-volume, portable bioassays.Angew Chem Int Ed Engl,46,1318-20.
  14. Pai, NP,Vadnais, C,Denkinger, C,Engel, N,Pai, M(2012).Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low- and middle-income countries.PLoS Med,9,e1001306.
  15. Sones, CL,Katis, IN,He, PJ(2014).Laser-induced photo-polymerisation for creation of paper-based fluidic devices.Lab Chip,14,4567-74.
  16. Stevens, DY,Petri, CR,Osborn, JL,Spicar-Mihalic, P,McKenzie, KG,Yager, P(2008).Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage.Lab Chip,8,2038-45.
  17. Wang, B,Tchessalov, S,Cicerone, MT,Warne, NW,Pikal, MJ(2009).Impact of sucrose level on storage stability of proteins in freeze-dried solids: II. correlation of aggregation rate with protein structure and molecular mobility.J Pharm Sci,98,3145-66.
  18. Xu, C,Cai, L,Zhong, M,Zheng, S(2015).Low-cost and rapid prototyping of microfluidic paper-based analytical devices by inkjet printing of permanent marker ink.RSC Advances,5,4770-3.
  19. Yamada, K,Henares, TG,Suzuki, K,Citterio, D(2015).Paper-based inkjet-printed microfluidic analytical devices.Angew Chem Int Ed Engl,54,5294-310.