题名

向運算轉:新媒體研究與資訊技術結合的契機與挑戰

并列篇名

The Computational Turn for New Media Studies: Opportunities and Challenges

DOI

10.6123/JCRP.2014.004

作者

鄭宇君(Yu-Chung Cheng)

关键词

向運算轉 ; 行動傳播 ; 社交媒體 ; 鉅量資料 ; 數位人文 ; the computational turn ; mobile communication ; social media ; Big Data ; digital humanity

期刊名称

傳播研究與實踐

卷期/出版年月

4卷1期(2014 / 01 / 01)

页次

67 - 83

内容语文

繁體中文

中文摘要

今日人們使用行動裝置與社交媒體的時間大幅增加,使用行為與傳播內容愈加分殊化,這對傳播研究造成極大挑戰。新媒體研究開始與資訊科學結合,在思維與研究面向產生「向運算轉」(computational turn),利用資訊技術大量收集與分析使用者留下的數位足跡,藉此找出使用者真實的數位傳播活動。本文從方法論的角度出發,透過批判性的文獻檢閱與實際的個案研究經驗,說明鉅量資料分析取徑對於傳播研究方法帶來的契機與挑戰。

英文摘要

As digital technologies penetrate deeper into our lives, mobile devices and social media occupy more and more of our time, user behavior and communication content increasingly diversify. Following this communication shift, methods derived from traditional social sciences become seriously challenged. To identify digital communication activities conducted by users, new media research turn to information science for new ally. Digital technologies are employed to collect large amounts of data and to trace digital footprints of users. Driven by the Big-Data approach, this computational turn is currently taking place in communication research with its impacts and implications. Based on a critical review of literature and case-study experiences, this paper addresses issues concerning the Big-Data approach used in new media studies from a methodological perspective. New possibilities are identified and explained along with challenges.

主题分类 社會科學 > 傳播學
参考文献
  1. 李蔡彥、鄭宇君(2011)。資訊科技與新媒體研究之發展。傳播研究與實踐,1(1),75-80。
    連結:
  2. 葉啟政(2001)。均值人與離散人的觀念巴貝塔:統計社會學的兩個概念基石。臺灣社會學,1,1-63。
    連結:
  3. 鄭宇君(2013)。從數位學習到新素養:電子書閱讀器對高中生社群的可能影響。新聞學研究,114,127-163。
    連結:
  4. 鄭宇君、陳百齡(2013)。探索2012 臺灣總統大選之社交媒體浮現社群:鉅量資料分析取徑。2013 中華傳播學會年會,臺北,臺灣:
    連結:
  5. Schradie, J. (2013). Big Data not big enough? How the digital divide leaves people out. PBS Mediashift. Retrieved from http://www.pbs.org/mediashift/2013/07/big-datanot-big-enough-how-digital-divide-leaves-people-out
  6. Barabási, A. L.(2003).Linked: How everything is connected to everything else and what it means for business, science, and everyday life.New York, NY:Plume.
  7. Barabási, A. L.,Bonabeau, E.(2003).Scale-free networks.Scientific American,288(5),50-59.
  8. Berry, D. M.(2011).The computational turn: Thinking about the digital humanities.Culture Machine,12
  9. boyd, d.,Crawford, K.(2012).Critical questions for Big Data: Provocations for a cultural, technological, and scholarly phenomenon.Information, Communication, & Society,15,662-679.
  10. Burgess, J.,Bruns, A.,Hjorth, L.(2013).Emerging methods for digital media research: An introduction.Journal of Broadcasting & Electronic Media,57,1-3.
  11. Cheng, Y.-C.,Liao, W.-H.,Li, T.-Y.,Chueh, C.-P.,Cho, H.-C.(2013).Exploring the reading experiences of high school students on E-Book reader.International Journal of Online Pedagogy and Course Design,3(1),17-32.
  12. Eagle, N.,Pentland, A.(2006).Reality mining: Sensing complex social systems.Personal and Ubiquitous Computing,10,255-268.
  13. Giles, J.(2012).Computational social science: Making the links.Nature,488,448-450.
  14. Gold, M. K.(Ed.)(2011).Debates in the digital humanities.Minneapolis, MN:The University of Minnesota Press.
  15. Gruzd, A.,Wellman, B.,Takhteyev, Y.(2011).Imagining twitter as an imagined community.American Behavioral Scientist,55,1294-1318.
  16. Hartley, J.(2012).Digital futures for cultural and media studies.West Sussex, UK:Wiley.
  17. Kärkkäinen, T.,Vaittinen, T.,Väänänen-Vainio-Mattila, K.(2010).I don't mind being logged, but want to remain in control: A field study of mobile activity and context logging.CHI'10 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,New York, NY:
  18. Lazer, D.,Pentland, A.,Adamic, L.,Aral, S.,Barabási, A. L.,Brewer, D.(2009).Computational social science.Science,323,721-723.
  19. Lewis, S. C.,Zamith, R.,Hermida, A.(2013).Content analysis in an era of Big Data: A hybrid approach to computational and manual methods.Journal of Broadcasting & Electronic Media,57,34-52.
  20. Mahrt, M.,Scharkow, M.(2013).The value of Big Data in digital media research.Journal of Broadcasting & Electronic Media,57,20-33.
  21. Mayer-Schönberger, V.、Cukier, K.、林俊宏譯(2013)。大數據:「數位革命」之後,「資料革命」登場:巨量資料掀起生活、工作和思考方式的全面革新。臺北,臺灣:天下文化。
  22. Rheingold, H.(2012).Net smart: How to thrive online.Cambridge, MA:The MIT Press.
  23. van Dijck, J.(2009).Users like you? Theorizing agency in user-generated content.Media, Culture & Society,31,41-58.
  24. Vis, F.(2013).Twitter as a reporting tool for breaking news.Digital Journalism,1,27-47.
  25. 城田真琴、鐘慧真譯、梁世英譯(2013)。Big Data 大數據的獲利模式:圖解.案例.策略.實戰ビッグデータの衝撃。臺北,臺灣:經濟新潮社。
被引用次数
  1. 傅文成(2020)。以語料庫分析方法檢驗新南向政策的政府與媒體風險建構策略。中華傳播學刊,37,189-226。
  2. 黃敬程、陳柏溢、陳冠至(2018)。孰執牛耳?明代蘇州藏書家社群的數位人文解析。教育資料與圖書館學,55(3),243-284。
  3. 紀慧君(2018)。從語料分析探究有機食物之媒體再現:三十年之意義與轉變。中華傳播學刊,34,209-252。
  4. 林顯明(2015)。臺灣數位人文研究發展:跨領域學習與研究之芻議。國立臺中科技大學通識教育學報,4,59-79。
  5. 劉姝廷(2021)。為何習近平要求「講好中國故事」?中國的媒體與宣傳策略-《紅色滲透》書評。新聞學研究,149,205-212。
  6. 盧安邦、鄭宇君(2017)。用方法說故事:探析電腦輔助文本分析工具在框架研究之應用。傳播研究與實踐,7(2),145-178。
  7. 潘金谷、陳百齡、區國強(2017)。另一種「新聞攝影」?―以「洪仲丘事件」中Facebook 粉絲頁為例,初探社群平臺之影像傳播。傳播研究與實踐,7(1),141-180。
  8. 鄭宇君、施旭峰(2016)。探索2012 台灣總統大選社交媒體之新聞來源引用。中華傳播學刊,29,109-135。