题名

政治網路口碑的情感分析:語意關連性之觀點

并列篇名

Sentiment Analysis of Political Word-of-Mouth on the Internet: The View of Semantic Orientation

DOI

10.6123/JCRP.2018.07_8(2).0003

作者

趙玉娟(Chao, Yu-Chuan);陶振超(Tao, Chen-Chao)

关键词

情感分析 ; 點式共通資訊 ; 語意關連性 ; 語意指向 ; 情緒價性 ; sentiment analysis ; pointwise mutual information ; semantic association ; semantic orientation ; valence

期刊名称

傳播研究與實踐

卷期/出版年月

8卷2期(2018 / 07 / 01)

页次

75 - 107

内容语文

繁體中文

中文摘要

政治網路口碑勃興,其內容究竟是反映輿論,還是企圖影響輿論,一直沒有定論。本文針對2014 年臺北市長候選人連勝文與柯文哲的政治網路口碑,採情感分析詞彙法中的語料基礎取徑,以點式共通資訊(兩個詞實際上共同出現的機率與機遇的比值,越高代表越常共同出現)分別選出與連勝文或柯文哲語意關連性高的情緒詞,並檢視與人們的認知關連性是否吻合。結果發現,政治網路口碑與人們的認知不一致,受到政黨傾向與情緒字價性所調節:對負面情緒詞,無論泛藍或泛綠會將大部分歸類為與競爭對手有關;對正面的情緒詞,泛藍歸類偏向中性,泛綠則會全部歸類為與自己支持的候選人有關。結論指出政治網路口碑不是意見、沒有反映輿論,而是說服、企圖影響輿論。

英文摘要

Political word-of-mouth burgeons on the internet. Whether its content is reflecting public opinion, or actually attempting to influence public opinion, is still unknown. This study use the lexicon-based sentiment analysis to examine political word-of-mouth of the two candidates of Taipei Mayor in 2014, Sheng-Wen Lian and Wen-Zhe Ke. We first computed pointwise mutual information (PMI, the ratio of joint probability of the co-occurrence of two words to the chance of the co-occurrence of the same words) to estimate the semantic association between candidate names and emotional words. Then semantic orientation, which is the difference between the PMI of an emotional word to the two candidate names, was obtained to classify emotions as either in the Lian group or the Ke group. Finally, an online survey was used to assess whether the pattern appearing in political word-of-mouth matches the cognitive association in people’s mind. The results show that semantic orientation in political word-of-moth and cognitive association in people’s mind are inconsistent. The partisanship and the valence of emotional words moderate the aforementioned relationship. It is concluded that political word-of-mouth on the internet is in fact persuasive text, not opinion.

主题分类 社會科學 > 傳播學
参考文献
  1. 卓淑玲、陳學志、鄭昭明(2013)。臺灣地區華人情緒與相關心理生理資料庫─中文情緒詞常模研究。中華心理學刊,55,493-523。
    連結:
  2. 卓淑玲、陳學志、鄭昭明(2013)。臺灣地區華人情緒與相關心理生理資料庫─中文情緒詞常模研究。中華心理學刊,55,493-523。
    連結:
  3. 卓淑玲、陳學志、鄭昭明(2013)。臺灣地區華人情緒與相關心理生理資料庫─中文情緒詞常模研究。中華心理學刊,55,493-523。
    連結:
  4. Archak, N.,Ghose, A.,Ipeirotis, P. G.(2011).Deriving the pricing power of product features by mining consumer reviews.Management Science,57,1485-1509.
  5. Boiy, E.,Moens, M.-F.(2009).A machine learning approach to sentiment analysis in multilingual Web texts.Information Retrieval,12,526-558.
  6. Bollen, J.,Mao, H.,Zeng, X.(2011).Twitter mood predicts the stock market.Journal of Computational Science,2,1-8.
  7. Brader, T.(2005).Striking a responsive chord: How political ads motivate and persuade voters by appealing to emotions.American Journal of Political Science,49,388-405.
  8. Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings. Retrieved from The Center for Research in Psychophysiology, University of Florida: https://www.uvm.edu/pdodds/teaching/courses/2009-08UVM-300/docs/others/everything/bradley1999a.pdf
  9. Bradley, M. M.,Lang, P. J.(1994).Measuring emotion: The Self-Assessment Manikin and the semantic differential.Journal of Behavioral Therapy and Experimental Psychiatry,25,49-59.
  10. Bucy, E. P.(Ed.),Holbert, R. L.(Ed.)(2014).Sourcebook for political communication research: Methods, measures, and analytical techniques.New York, NY:Routledge.
  11. Cambria, E.,Schuller, B.,Xia, Y.,Havasi, C.(2013).New avenues in opinion mining and sentiment analysis.IEEE Intelligent Systems,28(2),15-21.
  12. Carpini, M. X. D.,Cook, F. L.,Jacobs, L. R.(2004).Public deliberation, discursive participation, and citizen engagement: A review of the empirical literature.Annual Review of Political Science,7,315-344.
  13. Ceron, A.,Curini, L.,Iacus, S. M.(2015).Using sentiment analysis to monitor electoral campaigns: Method matters-evidence from the United States and Italy.Social Science Computer Review,33,3-20.
  14. Ceron, A.,Curini, L.,Iacus, S. M.,Porro, G.(2014).Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens' political preferences with an application to Italy and France.New Media & Society,16,340-358.
  15. Chmiel, A.,Sienkiewicz, J.,Thelwall, M.,Paltoglou, G.,Buckley, K.,Kappas, A.,Hołyst, J. A.(2011).Collective emotions online and their influence on community life.Plos One,6(7)
  16. Chmiel, A.,Sobkowicz, P.,Sienkiewicz, J.,Paltoglou, G.,Buckley, K.,Thelwall, M.,Holyst, J. A.(2011).Negative emotions boost user activity at BBC forum.Physica A,390,2936-2944.
  17. Chong, D.,Druckman, J. N.(2007).Framing theory.Annual Review of Political Science,10,103-126.
  18. Church, K. W.,Hanks, P.(1990).Word association norms, mutual information, and lexicography.Computational Linguistics,16,22-29.
  19. Dahlgren, P.(2005).The Internet, public spheres, and political communication: Dispersion and deliberation.Political Communication,22,147-162.
  20. Ekman, P.(1993).Facial expression and emotion.American Psychologist,48,384-392.
  21. Ekman, P.,Cordaro, D.(2011).What is meant by calling emotions basic.Emotion Review,3,364-370.
  22. Ekman, P.,Friesen, W. V.(1971).Constants across cultures in the face and emotion.Journal of Personality and Social Psychology,17,124-129.
  23. Ekman, P.,Friesen, W. V.,O'Sullivan, M.,Chan, A.,Diacoyanni-Tarlatzis, I.,Heider, K.(1987).Universals and cultural differences in the judgments of facial expressions of emotion.Journal of Personality and Social Psychology,53,712-717.
  24. González-Bailón, S.,Banchs, R. E.,Kaltenbrunner, A.(2012).Emotions, public opinion, and U.S. presidential approval rates: A 5-year analysis of online political discussions.Human Communication Research,38,121-143.
  25. González-Bailón, S.,Paltoglou, G.(2015).Signals of public opinion in online communication: A comparison of methods and data sources.The ANNALS of the American Academy of Political and Social Science,659,95-107.
  26. Gross, K.(2008).Framing persuasive appeals: Episodic and thematic framing, emotional response, and policy opinion.Political Psychology,29,169-192.
  27. Hu, M.,Liu, B.(2004).Mining and summarizing customer reviews.the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Seattle, WA:
  28. Janssen, D.,Kies, R.(2005).Online forums and deliberative democracy.Acta Politica,40,317-335.
  29. Lecheler, S.,Schuck, A. R. T.,de Vreese, C. H.(2013).Dealing with feelings: Positive and negative discrete emotions as mediators of news framing effects.Communications,38,189-209.
  30. Malouf, R.,Mullen, T.(2008).Taking sides: User classification for informal online political discourse.Internet Research,18,177-190.
  31. McCombs, M. E.,Shaw, D. L.(1993).The evolution of agenda‐setting research: Twenty‐five years in the marketplace of ideas.Journal of Communication,43(2),58-67.
  32. McCombs, M. E.,Shaw, D. L.(1972).The agenda-setting function of mass media.Public Opinion Quarterly,36,176-187.
  33. Mejova, Y.,Srinivasan, P.,Boynton, B.(2013).GOP primary season on Twitter: "Popular" political sentiment in social media.the 6th ACM international conference on Web search and data mining,Rome, Italy:
  34. Mohammad, S. M.,Zhu, X.,Kiritchenko, S.,Martin, J.(2015).Sentiment, emotion, purpose, and style in electoral tweets.Information Processing & Management,51,480-499.
  35. Nabi, R. L.(2003).Exploring the framing effects of emotion: Do discrete emotions differentially influence information accessibility, information seeking, and policy preference?.Communication Research,30,224-247.
  36. Pang, B.,Lee, L.(2008).Opinion mining and sentiment analysis.Foundations and Trends® in Information Retrieval,2,1-135.
  37. Prabowo, R.,Thelwall, M.(2009).Sentiment analysis: A combined approach.Journal of Informetrics,3,143-157.
  38. PTT 鄉民百科(n.d.)。〈婉君〉。取自http://zh.pttpedia.wikia.com/wiki/婉君
  39. Redondo, J.,Fraga, I.,Padrón, I.,Comesaña, M.(2007).The Spanish adaptation of ANEW (affective norms for English words).Behavior Research Methods,39,600-605.
  40. Ringsquandl, M.,Petković, D.(2013).Analyzing political sentiment on Twitter.the AAAI Spring Symposium on Analyzing Microtext,Stanford, CA:
  41. Sebastiani, F.(2002).Machine learning in automated text categorization.ACM Computing Surveys,34,1-47.
  42. Serrano-Guerrero, J.,Olivas, J. A.,Romero, F. P.,Herrera-Viedma, E.(2015).Sentiment analysis: A review and comparative analysis of Web services.Information Sciences,311,18-38.
  43. Stieglitz, S.,Dang-Xuan, L.(2013).Social media and political communication: A social media analytics framework.Social Network Analysis and Mining,3,1277-1291.
  44. Strapparava, C.,Valitutti, A.(2004).WordNet affect: An affective extension of WordNet.the 4th International Conference on Language Resources and Evaluation,Lisbon, Portugal:
  45. Taboada, M.,Brooke, J.,Tofiloski, M.,Voll, K.,Stede, M.(2011).Lexicon-based methods for sentiment analysis.Computational Linguistics,37,267-307.
  46. Thelwall, M.,Buckley, K.,Paltoglou, G.(2011).Sentiment in Twitter events.Journal of the American Society for Information Science and Technology,62,406-418.
  47. Thelwall, M.,Buckley, K.,Paltoglou, G.,Cai, D.,Kappas, A.(2010).Sentiment in short strength detection informal text.Journal of the American Society for Information Science and Technology,61,2544-2558.
  48. Thelwall, M.,Wilkinson, D.,Uppal, S.(2010).Data mining emotion in social network communication: Gender differences in MySpace.Journal of the American Society for Information Science and Technology,61,190-199.
  49. Thet, T. T.,Na, J.-C.,Khoo, C. S. G.(2010).Aspect-based sentiment analysis of movie reviews on discussion boards.Journal of Information Science,36,823-848.
  50. Tomkins, S. S.,McCarter, R.(1964).What and where are the primary affects? Some evidence for a theory.Perceptual and Motor Skills,18,119-158.
  51. Tumasjan, A.,Sprenger, T. O.,Sandner, P. G.,Welpe, I. M.(2011).Election forecasts with Twitter: How 140 characters reflect the political landscape.Social Science Computer Review,29,402-418.
  52. Turney, P. D.(2002).Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews.the Proceedings of the 40th Annual Meeting on Association for Computational Linguistics,Philadelphia, Pennsylvania:
  53. Turney, P. D.,Littman, M. L.(2003).Measuring praise and criticism: Inference of semantic orientation from association.ACM Transactions on Information Systems,21,315-346.
  54. Young, L.,Soroka, S. N.(2012).Affective news: The automated coding of sentiment in political texts.Political Communication,29,205-231.