题名

查核資料分析之發展及應用-以臺灣四大會計師事務所為例

并列篇名

A Study on the Development and Application of Audit Data Analytics in Taiwanese Big Four Accounting Firms

作者

林嬋娟(Chan-Jane Lin);郭頎君(Qi-Jun Guo)

关键词

查核資料分析 ; 查核分析工具 ; 會計師事務所 ; 四大 ; Audit data analytics (ADA) ; Audit analytics tools ; Accounting firms ; Big four

期刊名称

會計審計論叢

卷期/出版年月

10卷2期(2020 / 12 / 01)

页次

1 - 29

内容语文

繁體中文

中文摘要

本研究旨在探討臺灣四大會計師事務所發展與應用查核資料分析(以下簡稱查核分析)之情形。藉由對事務所負責查核分析之資深合夥人之訪談,及針對各所選擇之查核案件成員發放問卷,瞭解簽證會計師及查核團隊成員對於使用查核分析之接受度。訪談結果顯示,四大會計師事務所對於發展查核分析之動機、應用查核分析所面臨之挑戰、因應挑戰之方式、應用查核分析之效益、查核分析工具發展之現況與歷程,以及對該技術未來展望的大方向皆相似,僅在因應挑戰之作法上稍有差異。問卷調查結果顯示,應用查核分析時,大部分的工作仍由查核團隊成員執行,最常使用之工具為Excel。在接受度方面,受試者普遍認同應用查核分析確實具有效益、事務所持鼓勵態度並提供足夠的輔助資源,以及審計準則與國內相關法規並未阻礙其使用查核分析。另外,高度使用查核分析之案件受試者更加認同查核分析之效益與事務所提供輔助之足夠性。值得注意的是,受試者面臨較大的困難係判斷分析切入點,與正確判讀並解釋查核分析結果,此顯示查核分析主要扮演協助查核之角色,並未降低專業判斷的重要性。最後,本調查發現管理職與非管理職在某些面向存在認同落差,此結果顯示,為發揮查核分析應用之效益,事務所未來宜考量加強使用查核分析工具及解釋分析結果之訓練、增加資訊專業人員之輔助、加強推動審計創新提案,以及注意應用查核分析可能會增加客戶之工作量等。

英文摘要

The purpose of this study is to explore the development and application of audit data analytics (ADA) for Big4 accounting firms in Taiwan. In addition to the in-depth interviews with senior partners in charge of ADA for each audit firm to gain insight into the above issues, this study also conducts a questionnaire survey to audit engagement team members to understand the acceptance of ADA by both senior and junior auditors. The results from interviews indicate Big4 share similar responses in the following aspects: the motivations for the development of ADA, the challenges arising from applying ADA, how they address the challenges faced, the benefits of applying ADA, the evolution of ADA tools, and the future outlook of ADA. There exists only minor differences in how they respond to the challenges. As to the questionnaire survey, the results find that most of the additional work needed for ADA application are provided by audit team members, and among the tools used, Excel is the most popular one. With respect to the degree of acceptance, the auditors surveyed agree that the use of ADA is indeed beneficial and the sufficient supports are provided by their audit firms. Further, the auditing standards and related rules do not discourage them from using ADA. In particular, for heavy-ADA application engagements, audit team members tend to appreciate more on the benefits to their audit and the supports from the firm. In addition, they perceive both audit standards and related government rules do not discourage them from applying ADA. Interestingly, this study finds that the biggest difficulty faced by audit members is to make right judgments on when to apply ADA, and how to interpret the results from ADA application. This implies that how to exercise professional judgements remains very critical to auditors while applying ADA. Lastly, this study finds that supervisors and audit staff have different views on certain aspects, such as the difficulty in using ADA tools, the perceived workload of the client, and the sufficiency of the support by their audit firms. This finding suggests that it is important to emphasize more on the perceptions by audit staff in the future training. The accounting firms may also like to encourage innovations from audit staff and provide sufficient IT support to make the ADA application more effective.

主题分类 社會科學 > 財金及會計學
社會科學 > 管理學
社會科學 > 法律學
参考文献
  1. Alles, M. G.(2015).Drivers of the use and facilitators and obstacles of the evolution of big data by the audit profession.Accounting Horizons,29(2),439-449.
  2. American Institute of Certified Public Accountants=AICPA(2017).Guide to Audit Data Analytics.New York, NY:AICPA.
  3. American Institute of Certified Public Accountants=AICPA(2015).Audit Data Standards: General Ledger Standard.New York, NY:AICPA.
  4. American Institute of Certified Public Accountants=AICPA(2019).Audit Data Standard and Audit Data Analytics Working Group.New York, NY:AICPA.
  5. American Institute of Certified Public Accountants=AICPA(2019).Audit Data Analytics to Traditional Procedures Mapping Document.New York, NY:AICPA.
  6. American Institute of Certified Public Accountants=AICPA(2015).Audit Data Standards: Base Standard.New York, NY:AICPA.
  7. Appelbaum, D.(2016).Securing big data provenance for auditors: The big data provenance black box as reliable evidence.Journal of Emerging Technologies in Accounting,13(1),17-36.
  8. Appelbaum, D.,Kogan, A.,Vasarhelyi, M. A.(2017).Big data and analytics in the modern audit engagement: Research needs.Auditing: A Journal of Practice & Theory,36(4),1-27.
  9. Appelbaum, D.,Kogan, A.,Vasarhelyi, M. A.(2018).Analytical procedures in external auditing: A comprehensive literature survey and framework for external audit analytics.Journal of Accounting Literature,40,83-101.
  10. Austin, A., T. Carpenter, M. H. Christ, and C. Nielson. 2019. The data analytics transformation: Evidence from auditors, CFOs, and standard-setters. Working paper, University of Richmond and University of Georgia.
  11. Australian Accounting Standards Board (AUASB). 2018. Use of technology in the audit including data analytics. Available online at: https://www.auasb.gov.au/admin/file/content102/c3/Jun18_5(c)(i)_Strategic_Plan_Use_of_Technology(Revised).pdf
  12. Bauer, T. D.,Estep, C.(2019).One team or two? investigating relationship quality between auditors and IT specialists: Implications for audit team identity and the audit process.Contemporary Accounting Research,36(4),2142-2177.
  13. Bierstaker, J.,Janvrin, D.,Lowe, D. J.(2014).What factors influence auditors' use of computer-assisted audit techniques?.Advances in Accounting Incorporating Advances in International Accounting,30(1),67-74.
  14. Brown-Liburd, H.,Issa, H.,Lombardi, D.(2015).Behavioral implication of big data’s impact on audit judgment and decision making and future research directions.Accounting Horizons,29(2),451-468.
  15. Cao, M.,Chychyla, R.,Stewart, T.(2015).Big data analytics in financial statement audits.Accounting Horizons,29(2),423-429.
  16. Chen, C. L. P.,Zhang, C. Y.(2014).Data-intensive applications, challenges, techniques and technologies: A survey on big data.Information Sciences,275,314-347.
  17. Dai, J.,Vasarhelyi, M. A.(2016).Imagineering audit 4.0.Journal of Emerging Technologies in Accounting,13(1),1-15.
  18. Deloitte. 2019. 2019 Transparency report. Available online at: https://www2.deloitte.com/content/dam/Deloitte/au/Documents/audit/au-audit-transpaparency-report-2019.pdf
  19. Deloitte. n.d.. Deloitte Omnia. Available online at: https://www2.deloitte.com/us/en/pages/audit/solutions/deloitte-omnia-unifying-people-processes-and-technology-in-auditing.html
  20. Deloitte. 2017. Delivering smarter audits: Insights through innovation. Available online at: https://www2.deloitte.com/content/dam/Deloitte/us/Documents/audit/us-audit-smarter-audits-dynamic-insights-through-innovation.pdf
  21. Demchenko, Y.,Grosso, P.,De Laat, C.,Membrey, P.(2013).Addressing big data issues in scientific data infrastructure.IEEE International Conference on Collaboration Technologies and Systems (CTS),San Diego, California:
  22. Earley, C. E.(2015).Data analytics in auditing: Opportunities and challenges.Business Horizons,58(5),493-500.
  23. Eilifsen, A., F. Kinserdal, W. F. Messier, and T. E. McKee. 2019. An exploratory study into the use of audit data analytics on audit engagements. Working paper, Norwegian School of Economics and Medical University of South Carolina.
  24. Elliott, R. K.(1992).The third wave breaks on the shores of accounting.Accounting Horizons,6(2),61-85.
  25. EY. 2019. EY UK 2019 Transparency report. Available online at: https://assets.ey.com/content/dam/ey-sites/ey-com/en_uk/about-us/transparency-report-2019/ey-uk-2019-transparency-report.pdf
  26. EY. n.d.. Audit innovation. Available online at: https://www.ey.com/en_gl/audit/innovation Financial Reporting Council (FRC). 2017. Audit quality thematic review: The use of data analytics in the audit of financial statements. Available online at: https://www.frc.org.uk/getattachment/4fd19a18-1beb-4959-8737-ae2dca80af67/AQTR_Audit-Data-Analytics-Jan-2017.pdf
  27. Gepp, A.,Linnenluecke, M. K.,O'Neill, T. J.,Smith, T.(2018).Big data techniques in auditing research and practice: Current trends and future opportunities.Journal of Accounting Literature,40,102-115.
  28. Gonzalez, G. C.,Sharma, P. N.,Galletta, D. F.(2012).The antecedents of the use of continuous auditing in the internal auditing context.International Journal of Accounting Information Systems,13(3),248-262.
  29. Hux, C. T.(2017).Use of specialists on audit engagements: A research synthesis and directions for future research.Journal of Accounting Literature,39,23-51.
  30. International Auditing and Assurance Standards Board=IAASB(2016).Exploring the Growing Use of Technology in the Audit, with a Focus on Data Analytics.New York, NY:IAASB.
  31. International Auditing and Assurance Standards Board=IAASB(2019).Proposed Strategy for 2020-2023 and Work Plan for 2020-2021.New York, NY:IAASB.
  32. International Auditing and Assurance Standards Board=IAASB(2018).Exploring the Growing Use of Technology in the Audit, with a Focus on Data Analytics.New York, NY:IAASB.
  33. KPMG. 2019. UK Transparency report 2019. Available online at: https://assets.kpmg/content/dam/kpmg/uk/pdf/2019/12/uk-transparency-report-2019.pdf
  34. KPMG. 2017. KPMG Clara: A smart audit platform. Available online at: https://assets.kpmg/content/dam/kpmg/xx/pdf/2017/05/kpmg-clara-a-smart-audit-platform.pdf
  35. Manita, R.,Elommal, N.,Baudier, P.,Hikkerova, L.(2020).The digital transformation of external audit and its impact on corporate governance.Technological Forecasting & Social Change,150,1-10.
  36. No, W. G.,Lee, K.,Huang, F.,Li, Q.(2019).Multidimensional audit data selection (MADS): A framework for using data analytics in the audit data selection process.Accounting Horizons,33(3),127-140.
  37. PwC. 2019a. Audit explorer. Available online at: https://www.pwc.com/gx/en/audit-services/assets/pdf/audit-explorer-at-a-glance-on-screen.pdf
  38. PwC. 2019b. Transparency report. Available online at: https://www.pwc.co.uk/annualreport/assets/2019/pdf/uk-transparency-report-19.pdf
  39. Salijeni, G.,Samsonova-Taddei, A.,Turley, S.(2019).Big data and changes in audit technology: Contemplating a research agenda.Accounting and Business Research,49(1),95-119.
  40. Sun, T.(2019).Applying deep learning to audit procedures: An illustrative framework.Accounting Horizons,33(3),89-109.
  41. Tysiac, K. 2020. AICPA Council supports advancement of new CPA licensure model. Journal of Accountancy (May 21). Available online at: https://www.journalofaccountancy.com/news/2020/may/aicpa-council-supports-advancement-of-new-cpa-licensure-model.html
  42. Venkatesh, V.,Morris, M. G.,Davis, G. B.,Davis, F. D.(2003).User acceptance of information technology: Toward a unified view.MIS Quarterly,27(3),425-478.
  43. Wang, T.,Cuthbertson, R.(2015).Eight issues on audit data analytics we would like researched.Journal of Information Systems,29(1),155-162.
  44. Warren, J. D., Jr,Moffitt, K. C.,Byrnes, P.(2015).How big data will change accounting.Accounting Horizons,29(2),397-407.
  45. World Economic Forum (WEF). 2017. Digital transformation initiative professional services industry. Available online at: https://www.accenture.com/_acnmedia/accenture/conversion-assets/wef/pdf/accenture-pr ofessional-services-industry.pdf
  46. Yoon, K.,Hoogduin, L.,Zhang, L.(2015).Big data as complementary audit evidence.Accounting Horizons,29(2),431-438.
  47. Zhaokai, Y.,Moffitt, K. C.(2019).Contract analytics in auditing.Accounting Horizons,33(3),111-126.
  48. 邱献良, Hsien-Lian(2016)。國立政治大學會計研究所=National Chengchi University。
  49. 張書瑋, Shu-Wei(2019)。會計人的數位轉型大調查。會計研究月刊,409,64-75。
  50. 莊蕎安, Chiao-An(2019)。金融區塊鏈函證正式商轉-專訪財金公司總經理林國良。會計研究月刊,398,66-69。
  51. 劉姵呈,2020,疫情衝擊財報公告,金管會:會計師可採替代方案。中央通訊社(2 月25 日),網址:https://www.cna.com.tw/news/afe/202002250410.aspx。(Liu, Pei-Cheng. 2020. Financial statements disclosure affected by the pandemic of Covid-19, FSC: Auditors can take alternative audit procedures. Central News Agency (February 25). Available online at: https://www.cna.com.tw/news/afe/202002250410.aspx)
被引用次数
  1. (2024)。新冠肺炎疫情初期及後期對查核期間與客戶盈餘管理之影響。當代會計,25(1),1-35。