题名

根據Frequent itemsets的變化來分析網路使用者需求趨勢-以104家教網為例

并列篇名

Analyzing the Trends of Web Users Behaviors Based on the Change of Frequent Itemsets

DOI

10.6285/MIC.6(S1).14

作者

施明毅(Ming-Yi Shih);黃紹榕(Shao-Rong Huang)

关键词

資料探勘 ; Emerging pattern ; 頻繁項目集 ; FP-Growth ; Data mining ; Emerging pattern ; Frequent itemsets ; FP-Growth

期刊名称

管理資訊計算

卷期/出版年月

6卷特刊1(2017 / 08 / 01)

页次

161 - 170

内容语文

繁體中文

中文摘要

對一個成功的網站管理者來說,了解網路使用者的使用趨勢是一個重要的工作。藉由了解使用者的趨勢變化,可以讓網站管理者制定出更有效率的策略,並提供更好的服務。資料探勘在現今網路時代,已經變成一項重要技術來挖掘這些資訊。在本文中,我們從兩段不同的時間軸中,收集網路使用者對此網站輸入的資料,並利用FP-Growth演算法分別找出其Frequent itemsets,再根據觀察不同時期Frequent itemsets的變化來定義emerging pattern、perished pattern和persistent pattern,並用這三種patterns來分析網路使用者的使用趨勢。在本文中,我們使用104家教網-一個幫學生和教師找家教配對的網站做為資料來源,並利用此方法進行分析,來找出其需求的變化。

英文摘要

Understanding the trends of Web users behavior is an important factor for running a successful website. Owners or adminstrators of websites need to make efficient marketing strategies and provide better services according to the change of users hehaviors. Data mining has become a significant tool to explore such kinds of information in the Internet age. In this paper, FP-Growth algorithm was applied to discover frequent itermsets on cllected data at different periods. Three types of changes for frequent itemsets (i.e., emerging pattern, perished pattern and persistent pattern) were defined to observe the behaviors of Web users. Among the results that data were collected from 104 tutoring Web site, we showed the charactertics of changes of Web users behaviors by analyzing these derived patterns.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Agrawal, R.,Srikant, R.(1994).Fast algorithm for mining association rules in large databases.Proceedings of the International Conference on Very Large Data-bases, VLDB-94
  2. Ahmed, K.,Emran, A. A.,Jesmin, T.,Mukti, R. F.,Rahman, M. Z.,Ahmed, F.(2013).Early Detection of Lung Cancer Risk Using Data Mining.Asian Pacific journal of cancer prevention,14(1),595-598.
  3. Bailey, J.(2002).Fast algorithms for mining Emerging Patterns.PKDD'02 Proceedings of the 6th Eurpean Conference on Principles of Data Mining and Knowledge Discovery
  4. Dong, G.,Li, J.(1999).Efficient mining of emerging patterns: discovering trends and differences.fifth ACM SIGKDD international conference on knowledge discovery and data mining
  5. Fan, H.,Ramamohanarao, K.(2006).Fast discovery and the generalization of strong jumping emerging patterns for building compact and accurate classifiers.IEEE Transactions Knowledge and Data Engineering,18(6),721-737.
  6. García-Borroto, M.,Martínez-Trinidad, J. F.,Carrasco-Ochoa, J. A.(2014).A survey of emerging patterns for supervised classification.Artificial Intelligence Rewiew,42(4),705-721.
  7. Glatz, E.,Mavromatidis, S.,Ager, B.,Dimitropoulos, X.(2014).Visualizing big network traffic data using frequent pattern mining and hypergraphs.Computing,96(1),27-38.
  8. Han, J.,Dong, G.,Yin, Y.(1999).Efficient mining of partial periodic patterns in time series database.Proceedings of the Fifteenth International Conference on Data Engineering, ICDE 1999
  9. Han, J.,Pei, J.,Yin,Y.(2000).Mining frequent patterns without candidate generation.SIGMOD '00 Proceedings of the 2000 ACM SIGMOD international conference on Management of data
  10. Jiang, F.,Leung, C. K.,Zhang, H.(2016).B-mine: Frequent Pattern Mining and Its Application to Knowledge Discovery from Social Networks.18th Asia-Pacific Web Conference
  11. Laila, A.,Mohamed, E.(2010).Vertical Mining of Frequent Patterns from Uncertain Data.Computer and Information Science,3(2),171-179.
  12. Li, J.,Dong, G.,Ramamohanarao, K.(2001).Making use of the most expressive jumping emerging patterns for classification.Knowledge and Information Systems,3(2),1-29.
  13. Li, J.,Ramamohanarao, K.,Dong, G.(2000).The space of jumping emerging patterns and its incremental maintenance algorithms.17th international conference on machine learning
  14. Nori, F.,Deypir, M.,Sadreddini, M. H.(2013).A sliding window based algorithm for frequent closed itemset mining over data streams.Journal of Systems and Software,86(3),615-623.
  15. Song, H. S.,Kim, J. K.,Kim, S. H.(2001).Mining the change of customer behavior in an internet shopping mall.Expert Systems with Applications,21,157-168.
  16. Wang, Z.,Fan, H.,Ramamohanarao, K.(2004).Exploiting maximal emerging patterns for classification.AI'04 Proceedings of the 17th Australian joint conference on Advances in Artificial Intelligence
  17. Zhang, X.,Dong, G.,Ramamohanarao, K.(2000).Information-based classification by aggregating emerging patterns.IDEAL '00 Proceedings of the Second International Conference on Intelligent Data Engineering and Automated Learning, Data Mining, Financial Engineering, and Intelligent Agents
  18. Zimek, A.,Assent, I.(2014).Frequent Pattern Mining Algorithms for Data Clustering.Frequent Pattern Mining