题名

基於Weibull產品的上記錄值樣本之壽命性能指標的計量值允收抽樣計劃

并列篇名

Variables acceptance sampling plan based on the lifetime performance index for Weibull products with upper record values

DOI

10.6285/MIC.6(S2).11

作者

吳忠武(Jong-Wuu Wu);邱雅君(Ya-Chun Chiu)

关键词

上記錄值 ; 壽命性能指標 ; Weibull 分配 ; 計量值允收抽樣計劃 ; Upper Record Value ; Lifetime Performance Index ; Weibull Distribution ; Variables Acceptance Sampling Plan

期刊名称

管理資訊計算

卷期/出版年月

6卷特刊2(2017 / 08 / 01)

页次

125 - 135

内容语文

繁體中文

中文摘要

在生產過程中,允收抽樣計劃(acceptance sampling plan)是提供生產者和消費者針對一批產品達到兩者對其產品品質之要求的一項決策規則。而且壽命性能指標(lifetime performance index;C_L )是被用來評估產品品質是否達到顧客所要求之水準的一項工具。另外,在某些現實狀況下,我們有興趣的是此次產品的壽命值是否比上一次產品的壽命值高,此種資料我們定義為記錄值。所以,在本文中主要探討假設產品壽命的上記錄值資料是來自於Weibull分配具有給定(或已知)的形狀參數β和未知的尺度參數γ,根據不同的允收品質水準(acceptance quality level;AQL)、不同的批容許不良率(lot tolerance percent defective;LTPD)、給定生產者風險和消費者風險的各種組合之下,基於壽命性能指標,我們推導出所要求檢驗的上記錄值之樣本大小m和其對應的臨界值C_0 並製成表格。最後,我們也列舉一實例來說明提出的計量值允收抽樣計劃是如何來評估產品是否被接受。

英文摘要

In the process of production, acceptance sampling plan is a decision rule that provides producers and consumers with a number of products that meet both of their product quality requirements. The lifetime performance index can be used to assess whether the product quality standard meets the level required by the customer. In addition, we need to record when the next products' life are higher than the previous products in some practical situations. Therefore, in this paper we assume that the data of the upper record values for lifetime of the products has a Weibull distribution with the given (or known) shape parameter β and unknown scale parameter γ and we derive the sample size of the upper record values m and the corresponding critical value C_0 and tabulated based on the lifetime performance index for various combinations of acceptance quality level (AQL), lot tolerance percent defective (LTPD), producer's risk, and consumer's risk. Finally, we use a practical example to illustrate how to implement this variables acceptance sampling plan for making a decision on product acceptance determination.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Weibull, W. (1939b). The Phenomenon of Rupture in Solids. Report No. 153, Ingeni&o&rs Vetenskaps Akademien Handligar, Stockholm.
  2. Rosin, P. and Rammler, E. (1933). The Laws Governing the Fineness of Powdered Coal. Journal of the Institute of Fuel, 7, 29-36.
  3. Wilson, E. B. and Hilferty, M. M. (1931). The distribution of chi-square. Proceedings of the National Academy of Sciences, 17, 684-688. DOI: 10.1073/pnas.17.12.684
  4. Fréchet, M. (1927). Surles ensembles compacts de fonctions esurables. Fundamenta Mathematicae, 9(1), 25-32.
  5. Weibull, W. (1939a). A Statistical Theory of the Strength of Materials. Report No. 151, Ingeni&o&rs Vetenskaps Akademien Handligar, Stockholm.
  6. Ahsanullah, M.(1995).Record Statistics.Hauppauge, New York:Nova Science Publishers, Inc..
  7. Arizono, I.,Kanagawa, A.,Ohta, H.,Watakabe, K.,Tateishi, K.(1977).Variable sampling plans for normal distribution indexed by Taguchi's loss function.Naval Research Logistics,44(6),591-603.
  8. Arnold, B. C.,Balakrishnan, N.,Nagaraja, H. N.(1998).Records.New York:John Wiley and Sons, Inc..
  9. Aslam, M.,Wu, C. W.,Jun, C. H.,Azam, M.,Itay, N.(2013).Developing a variables repetitive group sampling plan based on process capability index pk C with unknown mean and variance.Journal of Statistical Computation and Simulation,83,1507-1517.
  10. Casella, G.,Berger, R. L.(2002).Statistical inference.Pacific Grove, CA:Duxbury.
  11. Chan, L. K.,Cheng, S. W.,Spring, F. A.(1988).A New Measure of Process Capability: Cpm.Journal of Quality Technology,20,162-175.
  12. Gunasekera, S.(2015).Generalized inferences of R = P[X > Y] for Pareto distribution.Statistical Papers,56(2),333-351.
  13. Johnson, N. L.,Kotz, S.,Balakrishnan, N.(1994).Continuous Univariate Distributions.New York:John Wiley and Sons, Inc..
  14. Juran, J. M.(1974).Quality Control Handbook.New York:McGraw- Hill.
  15. Kane, V. E.(1986).Process Capability indices.Journal of Quality Technology,18,41-52.
  16. Kenneth, E. I.(1962).A Programming Language.New York:John Wiley and Sons, Inc..
  17. Kundu, Debasis,Gupta, Rameshwar D.(2006).Estimation of P[Y < X] for Weibull Distributions.IEEE Transactions on reliability,55,270-280.
  18. Lawless, J. F.(2003).Statistical Models and Methods for Lifetime Data.New York:John Wiley and Sons, Inc..
  19. Lawless, J. F.(1982).Statistical Models and Methods for Lifetime Data.New York:John Wiley and Sons, Inc..
  20. Lee, W. C.,Wu, J. W.,Hong, C. W.(2009).Assessing the lifetime performance index of products from progressively type II right censored data using Burr XII model.Mathematics and Computers in Simulation,79,2167-2179.
  21. Lee, W. C.,Wu, J. W.,Wu, S. Y.(2015).Optimal progressive type I group censoring plans for the Weibull distribution with cost constraint.ICIC Express Letters, Part B: Applications,5,1945-1950.
  22. Montgomery, D. C.(1985).Introduction to Statistical Quality Control.New York:John Wiley and Sons, Inc..
  23. Pearn, W. L.,Kotz, S.,Johnson, N. L.(1992).Distributional and Inferential Properties of Process Capability Indices.Journal of Quality Technology,24,216-231.
  24. Soliman, A. A.(2005).Estimation of parameters of life from progressively censored data using Burr-XII model.IEEE Transactions on Reliability,54,34-42.
  25. Soliman, A. A.,Al-Aboud, F. M.(2008).Bayesian inference using record values from Rayleigh model with application.European Journal of Operational Research,185,659-672.
  26. Weibull, W.(1951).A statistical distribution function of wide applicability.Journal of Applied Mechanics,18(3),293-297.
  27. Wu, C. W.(2012).An efficient inspection scheme for variables based on Taguchi capability index.European Journal of Operational Research,223,116-122.
  28. Wu, C. W.,Aslam, M.,Jun, C. H.(2012).Variables sampling inspection scheme for resubmitted lots based on the process capability index pk C.European Journal of Operational Research,217,560-566.
  29. Wu, J. W.(2001).A note on determining the number of outliers in an exponential sample by least squares procedure.Statistical Papers,42,489-503.
  30. Wu, J. W.,Tseng, H. C.(2006).Statistical inference about the shape parameter of the Weibull distribution by upper record values.Statistical Papers,49,95-129.
  31. Zehna, P. W.(1966).Invariance of maximum likelihood estimation.Ann. Math. Stat.,37,744-744.
  32. 李善德(2013)。碩士論文(碩士論文)。台北市,國立台灣科技大學。
  33. 邱雅君(2017)。碩士論文(碩士論文)。嘉義市,國立嘉義大學。
  34. 夏太偉(2008)。品質管理─理論與實務。台中市:滄海圖書。