题名

以資料探勘分析推甄入學之學生就讀機率-以某大學資管系為例

并列篇名

A Data Mining Analysis of the Probability of Freshmen Enrolled from Individual Admission-A Case of the Information Management Department at One University

DOI

10.6285/MIC.6(2).01

作者

張良政(Liang-Cheng Chang);吳蘊容(Yun-Rong Wu);張伃瑄(Huan-Shuan Chang);劉姵珺(Pei-Chun Liu)

关键词

資料探勘 ; 少子化 ; 關聯分析 ; 決策樹 ; data mining ; low fertility rate ; association rules ; decision tree

期刊名称

管理資訊計算

卷期/出版年月

6卷2期(2017 / 09 / 01)

页次

1 - 11

内容语文

繁體中文

中文摘要

隨著少子化的影響,教育部決定透過新生註冊率作為私立大學經營存續的依據。由於推薦甄試的比例提高,如何在推薦甄選入學過程中,掌握並選擇有強烈就讀可能的學生是各大學特別是私立大專院校最重要的課題。過去本校對於推甄資料的分類都透過人為主觀因素判斷,又缺乏後續追蹤驗證。本論文透過資料探勘技術,將推甄學生資料進行關聯分析,找出學生居住區域、性別、選填志願和就讀意願之間的關聯。接著根據關聯分析結果建立決策樹,以此決策樹預測下一學期個人申請入學可能就讀的人數,模型準確率可達87.5%。

英文摘要

During the effects of the low fertility rate, the Ministry of Education has decided to use the rate of freshman registration as the basis for the survival of private universities. As a result of the increase in the proportion of individual admission, it is the most important issue for universities, especially private universities, to grasp and choose students who are strongly enrolled from the individual admission. In the past, the department chose students through the subjective judgment, but also the lack of follow-up verification. In this paper, by the data mining, the analysis of student data will be analyzed to find out the association rules about students' location, gender, candidate colleges and decision results. Then to build a decision tree based on the association rules, so the decision tree to predict the number of freshmen of individual admission for next semester, the model accuracy rate of up to 87.5%.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. 洪大翔、盧龍泉、何雍慶(2009)。高等教育選校行為模式建構之探討。管理實務與理論研究,3(1),116-135。
    連結:
  2. 林志成 (2013, 2013-10-21)。甄選入學比例 提高到8 成。中國時報。
  3. 馮紹恩(2015,2015-03-02),少子化衝擊私校 校長:南部更嚴重,台灣醒報。
  4. 林曉雲、黃邦平(2015)。「虎年」海嘯 大學新生明年少2.7 萬人。自由時報。
  5. 金允文(2012)。大專院校1 年級學生人數預測報告(102 至113 學年度)。教育部統計處。
  6. 林秀姿(2015,2015-01-16)。少子化來襲8 年後大學減招13 萬人。聯合報。
  7. 教育部(2013),教育部輔導私立大專院校改善及停辦實施原則,行政院公報。
  8. Agrawal, R.,Srikant, R.(1994).Fast algorithms for mining association rules in large databases.Proceedings of the 20th International Conference on Very Large Data Bases
  9. Antonenko, P. D.,Toy, S.,Niederhauser, D. S.(2012).Using cluster analysis for data mining in educational technology research.Education Tech Research Development,60,383-398.
  10. Maringe, F.(2006).University and course choice Implications for positioning, recruitment and marketing.International Journal of Educational Management,20(6),466-479.
  11. Márquez-Vera, C.,Cano, A.,Romero, C.,Ventura, S.(2013).Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data.Applied Intelligence,38,315-330.
  12. Mayer-Schönberger, V.,Cukier, K.(2014).Big Data: A Revolution That Will Transform How We Live, Work, and Think.New York, USA:Eamon Dolan/Mariner Books.
  13. Ming, J. S. K.(2010).Institutional factors influencing students' college choice decision in Malaysia: A conceptual framework.International Journal of Business and Social Science,1(3),53-58.
  14. Natek, S.,Zwilling, M.(2014).Student data mining solution-knowledge management system related to higher education institutions.Expert Systems with Applications,41,6400-6407.
  15. PhridviRaj, M. S. B.,GuruRao, C. V.(2014).Data mining - past, present and future - a typical survey on data streams.Procedia Technology,12,255-263.
  16. Reddy, M.(2011).Determinants of student choice of business schools in India: a factor analytic investigation.International Journal of Management,28(3),751-762.
  17. Thomas, E. H.,Galambos, N.(2004).What satisfies students? Mining Student-Opinion Data with Regression and Decision Tree Analysis.Research in Higher Education,45(3),251-269.
  18. Vandamme, J.-P.,Meskens, N.,Superby, J.-F.(2007).Predicting academic performance by data mining methods.Education Economics,15(4),405-419.
  19. Vialardi, C.,Chue, J.,Peche, J. P.,Alvarado, G.,Vinatea, B.,Estrella, J.,Ortigosa, Á.(2011).A data mining approach to guide students through the enrollment process based on academic performance.User Modeling and User-Adapted Interaction,21(1-2)
  20. Wanli, X.,Rui, G.,Eva, P.,Sean, G.(2015).Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory.Computers in Human Behavior,47,168-181.
  21. Wilson, H. E.,Adelson, J. L.(2012).College choices of academically talented secondary students.Journal of Advanced Academics,23(1),32-52.
  22. Yu, C. H.,Kaprolet, C.,Jannasch-Pennell, A.,DiGangi, S.(2012).A Data Mining Approach to Comparing American and Canadian Grade 10 Students' PISA Science Test Performance.Journal of Data Science,10,441-464.
  23. 吳金雄(2014)。私立大學招生策略之探討一以S大學為例。明道學術論壇,9(1),3-18。