题名

運用意見探勘於企業聲譽分析之研究-以企業社會責任為主題

并列篇名

A Study of Corporate Reputation Analysis by Opinion Mining - A Case of Corporate Social Responsibility

DOI

10.6285/MIC.202109_10(2).0009

作者

吳肇銘(Chao-Ming Wu);蔡毓霖(Yu-Lin Tsai)

关键词

企業聲譽 ; 企業社會責任 ; 意見探勘 ; 情緒分析 ; 機器學習 ; Corporate Reputation ; Corporate Social Responsibility ; Opinion Mining ; Sentiment Analysis ; Machine Learning

期刊名称

管理資訊計算

卷期/出版年月

10卷2期(2021 / 09 / 01)

页次

92 - 110

内容语文

繁體中文

中文摘要

網路的發達及社群媒體的發展,讓許多企業高層開始重視社群媒體的影響力,希望能瞭解在網路上的企業聲譽及形象。近年來大眾亦相當看重企業對於整體經濟、公益活動、社會參與以及環境永續等社會責任相關議題,使得「企業社會責任」逐漸成為企業建立聲譽及形象的重要指標。因此,本研究以企業社會責任為主題,透過網路資料爬取、意見探勘技術,分析網路上對企業在社會責任上的評價,並透過兩個網路資料源比較、驗證各式機器學習分類方法之成效。本研究蒐集PTT與FB網路社群平台中與企業相關之新聞及評論留言,進行文本分類及情緒分析;使用SVM、CNN及LSTM三種方法進行新聞文本分類,以CNN、LSTM及Bi-LSTM方法將對應之評論留言進行情緒分類,並以語意分析計算出企業在企業社會責任四個構面與整體之情緒得分,藉以呈現企業在企業社會責任之表現與評價。本研究主要結論如下:(1)本研究提出之情緒分析模型,經驗證可有效分析出網路大眾對特定企業在「企業社會責任」四個構面與整體之評價;(2)SVM用於辨識「企業社會責任」新聞文本之成效相對最為穩定,CNN及LSTM之分類成效則較不穩定;(3)Bi-LSTM用於辨識「企業社會責任」新聞文本評論留言之正負情緒傾向成效最佳,其次為CNN及LSTM;(4)不同資料來源會呈現出不同評論留言情緒傾向。

英文摘要

The development of the Internet and social media have led many corporate executives pay more attention to the influence of social media, hope to understand their reputation and image on the Internet. In recent years, the public has paid great attention to corporate social responsibility issues, such as overall economy, charitable event, social participation, and environmental sustainability, making the "Corporate Social Responsibility" dimensions become an important indicator of corporate reputation and image. Thus, this study takes Corporate Social Responsibility (CSR) as an example, through text mining and deep learning technology, proposes an index and analysis module for measuring CSR. This study collects news text and comment messages about corporations on the social media (PTT、FB), marks the news texts according to the CSR dimensions, and uses SVM, CNN and LSTM three classification methods to find out the better classification method. At last, uses CNN, LSTM and Bi-LSTM to sentiment classify the comment about the corporation, calculate sentiment scores on all the dimensions to show the CSR performance and evaluation. The main conclusions of this study are as follows: (1) The sentiment analysis model proposed in this study can be verified to effectively analyze the Internet public's evaluation of specific enterprises in the four aspects of CSR and overall; (2) SVM is relatively stable for the effectiveness of identifying the CSR news text, and the classification effectiveness of CNN and LSTM is relatively unstable; (3) Bi-LSTM is best to identify the positive and negative sentiment tendencies of the CSR news text comments, followed by CNN and LSTM; (4) Different sources of data pool will show different sentiment tendencies to comments.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. 吳肇銘,金志聿,蔡毓霖(2019)。運用文字探勘於教學評鑑分析之研究-以中原大學資管系課程為例。商管科技季刊,20(4),437-468。
    連結:
  2. Berezina, K.,Bilgihan, A.,Cobanoglu, C.,Okumus, F.(2016).Understanding Satisfied and Dissatisfied Hotel Customers: Text Mining of Online Hotel Reviews.Journal of Hospitality Marketing & Management,25(1),1-24.
  3. Budworth, D.(1989).Intangible assets of companies.London:Science Support Group.
  4. Carroll, A. B.(1991).The pyramid of corporate social responsibility: Toward the Moral Management of Organizational Stakeholders.Business Horizons,34(4),39-48.
  5. Dos Santos, C.N.,Gatti, M.(2014).Deep convolutional neural networks for sentiment analysis of short texts.Proceedings of the 25th International Conference on Computational Linguistics: Technical Papers (COLING 2014),Dublin, Ireland:
  6. Elkington, J.(1998).Partnerships from cannibals with forks: The triple bottom line of 21st-century business.Environmental Quality Management,8(1),37-51.
  7. Fombrun, C. J.(1996).Reputation: Realizing value from the corporate image.Boston:Harvard Business School Press.
  8. Fombrun, C.,Gardberg, N. A.,Sever, J. M.(2000).The Reputation Quotient: A Multi-stakeholder Measure of Corporate Reputation.Journal of Brand Management,7(4),241-255.
  9. Fombrun, C.,Shanley, M.(1990).What's in a name? reputation building and corporate strategy.Academy of Management Journal,33(2),233-258.
  10. Gers, F. A.,Schmidhuber, J.,Cummins, F.(1999).Learning to forget: continual prediction with LSTM.Neural Computation,12(10),2451-2471.
  11. Gray, E. R.,Balmer, J. M. T.(1998).Managing corporate image and corporate reputation.Long Range Planning,31(5),695-702.
  12. Hochreiter, S.,Schmidhuber, J.(1997).Long short-term memory.Neural Computation,9(8),1735-1780.
  13. Hong, J. W.,Park, A. B.(2019).The Identification of Marketing Performance Using Text Mining of Airline Review Data.Mobile Information Systems,2019(1),1-8.
  14. Jia, S. X.(2018).Behind the ratings: Text mining of restaurant customers’ online reviews.International Journal of Market Research,60(6),561-572.
  15. Kalchbrenner, N.,Grefenstette, E.,Blunsom, P.(2014).A convolutional neural network for modelling sentences.Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
  16. Li, D.,Qian, J.(2016).Text Sentiment Analysis Based on Long Short-Term Memory.2016 First IEEE International Conference on Computer Communication and the Internet
  17. Li, Y. M.,Li, T. Y.(2013).Deriving market intelligence from microblogs.Decision Support Systems,55(1),206-217.
  18. Liao, S.,Wang, J.,Yu, R.,Sato, K.,Cheng, Z.(2017).CNN for situations understanding based on sentiment analysis of twitter data.Procedia computer science,111,376-381.
  19. Liu, B.(2011).Opinion mining and sentiment analysis.Web Data Mining
  20. Liu, B.,Zhang, L.(2012).A survey of opinion mining and sentiment analysis.Mining Text Data
  21. Lopez, M. M.,Kalita, J.(2017).,未出版
  22. Maheshwari, S. (2017). United and Pepsi Affairs Force Brands to Respect Social Media. The New York Times. Retrieved from http://www. nytimes.com
  23. McGuire, J. W.(1963).Business and Society.New York:McGraw-Hill.
  24. Medhat, W.,Hassan, A.,Korashy, H.(2014).Sentiment analysis algorithms and applications: A survey.Ain Shams Engineering Journal,5(4),1093-1113.
  25. Meijer, M. M.,Kleinnijenhuis, J.(2006).News and corporate reputation: Empirical findings from the Netherlands.Public Relations Review,32(4),341-348.
  26. PR Lass(2019 年 1 月 27 日)。媒體投稿參考:台灣網路媒體流量排名整理(2018 年 ) 【 部落格文字 】 。 取自https://www.prlass.com/2992/%E5%8F%B0%E7%81%A3%E7%B6%B2%E8%B7%AF%E6%96%B0%E8%81%9E%E5%AA%92%E9%AB%94%E6%B5%81%E9%87%8F%E6%8E%92%E5%90%8D-2018-01/
  27. Ravi, K.,Ravi, V.(2015).A survey on opinion mining and sentiment analysis: Tasks, approaches and applications.Knowledge-Based System,89,14-46.
  28. Roberts, P. W.,Dowling, G. R.(2002).Corporate reputation and sustained superior financial performance.Strategic Management Journal,23(12),1077-1093.
  29. Rui, H.,Liu, Y.,Whinston, A.(2013).Whose and what chatter matters? The effect of tweets on movie sales.Decision Support Systems,55(4),863-870.
  30. Saxton, M. K.(1998).Where do Reputations Come From?.Corporate Reputation Review,1(4),393-399.
  31. Schuster, M.,Paliwal, K. K.(1997).Bidirectional recurrent neural networks.IEEE Transactions on Signal Processing,45(11),1997.
  32. Shrum, W.,Wuthnow, R.(1988).Reputational status of organizations in technical systems.American Journal of Sociology,93(4),882-912.
  33. Tholusuri, A.,Anumala, M.,Malapolu, B.,Lakshmi, G. J.(2019).Sentiment Analysis using LSTM.International Journal of Engineering and Advanced Technology,8(6S3),1338-1340.
  34. Vapnik, V. N.(1995).The Nature of Statistical Learning Theory.New York:Springer-Verlag.
  35. Wang, J.-H.,Liu, T.-W.,Luo, X.,Wang, L.(2018).An LSTM Approach to Short Text Sentiment Classification with Word Embeddings.Proceeding of the 2018 Conference on Computational Linguistics and Speech Processing
  36. Word Business Council for Sustainable Development(1999).Corporate Social Responsibility: Meeting Changing Expectations.World Business Council for Sustainable Development.
  37. Xiao, Z.,Liang, P. J.(2016).Chinese Sentiment Analysis Using Bidirectional LSTM with Word Embedding.Proceedings of the 2nd International Conference on Cloud Computing and Security
  38. Xu, G.,Meng, Y.,Qiu, X.,Yu, Z.,Wu, Xu.(2019).Sentiment Analysis of Comment Texts Based on BiLSTM.IEEE Access,7,51522-51532.
  39. Zhang, L.,Chen, C.(2016).Sentiment Classification with Convolutional Neural Networks: an Experimental Study on a Large-scale Chinese Conversation Corpus.Proceedings of the 12th International Conference on Computational Intelligence and Security (CIS)
  40. 天下雜誌(2019)。CSR 天下企業公民。取自 http://topic.cw.com.tw/csr/
  41. 江易麇(2018)。國立雲林科技大學資訊管理學系。
  42. 吳怡靜(2017)。社群媒體時代企業如何應對?。天下雜誌,624
  43. 林彩雯(2015)。靜宜大學資訊管理學系。
  44. 林惠玲(2007)。國立中央大學人力資源管理研究所。
  45. 張育蓉(2012)。國立中興大學圖書資訊學研究所。
  46. 張偉德(2018)。國立中央大學企業管理學系碩士在職專班。
  47. 陳曉慧(2012)。國立中正大學會計與資訊科技研究所。
  48. 陳翰(2018)。淡江大學運輸管理學系運輸科學碩士班。
  49. 游綉雯(2015)。國立中興大學行銷學系所。
  50. 謝幼齡(2000)。國立中正大學企業管理研究所。
  51. 謝佩庭(2014)。國立交通大學多媒體工程研究所。
  52. 簡又新(編)(2012).致勝關鍵-邁向企業永續之路.台北市:臺灣永續能源研究基金會.
  53. 簡睿哲(2016)。企業社會責任,甜蜜的負荷?。政大商業評論。取自http://nccubr.nccu.edu.tw/article.php?aid=112&mid=32
  54. 顏和正(2019 年 1 月 3 日)。什麼是企業社會責任?一次搞懂關鍵字 CSR、ESG、SDGs。取自 https://csr.cw.com.tw/article/40743