题名

關聯規則應用於智慧工廠生產績效管理之研究

并列篇名

Association Rules Mining for Production Performance Management in AI manufacturing

DOI

10.6285/MIC.202409_13(2).0006

作者

林小甘(Hsiao-Kang Lin);廖紫柔(Tzu-Jou Liao)

关键词

智慧工廠 ; 關聯規則 ; Apriori ; R-arules套件 ; 生產績效管理 ; AI Manufacturing ; Association Rules ; Apriori ; R-arules Package ; Production Performance Management

期刊名称

管理資訊計算

卷期/出版年月

13卷2期(2024 / 09 / 01)

页次

79 - 85

内容语文

繁體中文;英文

中文摘要

當今製造系統中人工智慧技術的發展對預測性維護、品質保證和流程優化等智慧工廠應用非常有幫助。關聯規則是一種基於規則的機器學習方法,用於發現大型資料庫中變數之間的關聯性,已廣泛應用於商業智慧應用和智慧製造系統的決策中。然而,針對生產績效管理的預測製造系統的研究很少。本文提出Apriori演算法採用R-arules套件構建,用於預測分析以提高產品品質、生產穩定性和效率。進行了一個案例研究來說明所提出方法的可行性。

英文摘要

The development of Artificial Intelligence (AI) technology in today's manufacturing systems is very helpful for AI Manufacturing applications such as predictive maintenance, quality assurance and process optimization. Association rule learning, a rule-based machine learning method for discovering interesting relations between variables in large databases, has been widely used across business intelligent applications and AI Manufacturing for decision-making. However, there are few studies on predictive manufacturing systems for production performance management. This paper proposes Apriori-Based learning in R-arules for providing the predictive analytics to improve product quality with production stability and efficiency. A case study is conducted to illustrate the feasibility of the proposed approach.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學