题名 |
關聯規則應用於智慧工廠生產績效管理之研究 |
并列篇名 |
Association Rules Mining for Production Performance Management in AI manufacturing |
DOI |
10.6285/MIC.202409_13(2).0006 |
作者 |
林小甘(Hsiao-Kang Lin);廖紫柔(Tzu-Jou Liao) |
关键词 |
智慧工廠 ; 關聯規則 ; Apriori ; R-arules套件 ; 生產績效管理 ; AI Manufacturing ; Association Rules ; Apriori ; R-arules Package ; Production Performance Management |
期刊名称 |
管理資訊計算 |
卷期/出版年月 |
13卷2期(2024 / 09 / 01) |
页次 |
79 - 85 |
内容语文 |
繁體中文;英文 |
中文摘要 |
當今製造系統中人工智慧技術的發展對預測性維護、品質保證和流程優化等智慧工廠應用非常有幫助。關聯規則是一種基於規則的機器學習方法,用於發現大型資料庫中變數之間的關聯性,已廣泛應用於商業智慧應用和智慧製造系統的決策中。然而,針對生產績效管理的預測製造系統的研究很少。本文提出Apriori演算法採用R-arules套件構建,用於預測分析以提高產品品質、生產穩定性和效率。進行了一個案例研究來說明所提出方法的可行性。 |
英文摘要 |
The development of Artificial Intelligence (AI) technology in today's manufacturing systems is very helpful for AI Manufacturing applications such as predictive maintenance, quality assurance and process optimization. Association rule learning, a rule-based machine learning method for discovering interesting relations between variables in large databases, has been widely used across business intelligent applications and AI Manufacturing for decision-making. However, there are few studies on predictive manufacturing systems for production performance management. This paper proposes Apriori-Based learning in R-arules for providing the predictive analytics to improve product quality with production stability and efficiency. A case study is conducted to illustrate the feasibility of the proposed approach. |
主题分类 |
基礎與應用科學 >
資訊科學 社會科學 > 管理學 |