题名

平衡設計的單循環賽賽程表

并列篇名

The balanced design schedules for single round robin Tournament

DOI

10.6646/CYPEJ.201812_(12).0002

作者

蔡宗憲(Chung-Hsieh Tsai)

关键词

循環賽 ; 圓形法 ; 平衡設計 ; Round-Robin Tournament ; Circle Method ; Balanced Tournament Designs

期刊名称

中原體育學報

卷期/出版年月

12期(2018 / 12 / 01)

页次

11 - 20

内容语文

繁體中文

中文摘要

本文以N支球隊進行單循環賽為例,探討運動排程(sports scheduling)問題。本研究目的為在滿足限制條件下,求解符合平衡設計(balanced tournament designs, BTD)的循環賽賽程表,以圓形法(circle method)配合兩階段修正法作為求解的工具。研究結果顯示建構的模式可快速的產出符合平衡設計的單循環賽制賽程表。意即與傳統的作業模式相較,研究在求解效率、賽程合理及公平性各方面均有優越之處。

英文摘要

The purpose of this paper is to design balanced schedules for the round-robin tournaments. Methods: Circle method with a two-step approach are adopted to generate the optimal solutions for the schedules of N teams. Results: Results imply that the approach achieves feasible solutions efficiently for the problem of round-robin tournament schedule. Conclusion: The study achieves practical application value, and gives a direction for future work in this area, which could be applied for further research.

主题分类 社會科學 > 體育學
参考文献
  1. Anderson, I.(1989).Constructing Tournament Designs.The Mathematical Gazette,73(466),284-292.
  2. Easton, K.,Nemhauser, G.L.,Trick, M.A.(2002).The Traveling Tournament Problem: Description and Benchmarks.Principal and Practises of Constraint Programming
  3. Geinoz, T.,Ekim, D.,de Werra(2008).Construction of balanced sports schedules using partitions into subleagues.Operations Research Letters,36,279-282.
  4. Hamiez, J.,Hao, K.(2008).Using solution properties within an enumerative search to solve a sports league scheduling problem.Discrete Applied Mathematics,156,1683-1693.
  5. Haselgrove, J.,Leech, J.(1977).A Tournament Design Problem.The American Mathematical Monthly,84(3),198-201.
  6. Knust, S.(2010).Scheduling non-professional table-tennis leagues.European Journal of Operational Research,200,358-367.