题名

應用人工智慧及機器學習進行籃球投籃命中辨識

并列篇名

Application of artificial intelligence and machine learning for basketball shooting recognition

DOI

10.6976/TJPE.202211_(25).0001

作者

林欣穎(Hsin-Ying Lin);蔡旻諺(Min-Yen Tsai);林政宏(Cheng-Hung Lin);張家豪(Jia-Hao Chang)

关键词

機器視覺 ; 籃球自主訓練系統 ; 投籃熱區 ; 投籃命中率 ; machine vision ; basketball self-training system ; shot chart ; field goal percentage

期刊名称

淡江體育學刊

卷期/出版年月

25期(2022 / 11 / 01)

页次

1 - 14

内容语文

繁體中文

中文摘要

緒論:大數據及人工智慧結合籃球影像數據分析的研究已蔚為風潮,反觀國內在數據分析上的應用,多數仍以人工記錄的方式,耗費人力與時間,若能透過機器學習將使數據分析記錄更為快速。因此本研究目的為建構籃球投籃辨識系統,期望運用此系統能以簡易器材達成快速的數據分析,增進球隊訓練及比賽的效率。方法:以YOLOV4所建構的籃球投籃辨識系統,進行實際投籃影像的分析,拍攝畫面包含籃球半場的角落四點,進行六種不同目標投球數,每一個目標投球數皆有兩名實驗參與者,共有十二個時間介於1分30秒到5分30秒的影像片段,讓此系統進行投籃出手及投籃進球的判定,並與人工記錄進行比較。結果:對於籃球投籃出手的整體辨識準確率能達到94%,對於籃球投籃進球的整體辨識準確率能達到81%,並以視覺化的圖表呈現。結論:透過以機器學習為基礎的籃球投籃辨識系統,在不受設備資源及人力資源的限制下,能夠記錄投籃練習時的出手分布及投籃命中情形,並以視覺化圖表呈現。

英文摘要

Introduction: The research of big data and artificial intelligence combined with basketball image data analysis has become a trend. Looking at the application of data analysis in Taiwan, most of them are still recorded manually, which consumes manpower and time. If machine learning can be used, data analysis and recording will be faster. Therefore, the purpose of this study is to develop the Basketball Shooting Recognition System. It is expected that this system can achieve rapid data analysis with simple equipment and improve the efficiency of team training and competition. Methods: The basketball shooting recognition system constructed by YOLOV4 was used to collect the data of actual shooting images. The images included four corners of the basketball half court. And six different shooting target videos were carried out. Each target had two experimental participants, with a total of 12 video ranging from 1 minute 30 seconds to 5 minute 30 seconds. Let the system judge the shooting and shooting goal, and compare it with the manual record. Results: The overall recognition accuracy of basketball shooting shot can reach 94%. And the overall recognition accuracy of basketball shooting goal can reach 81%. All of them can be presented in visual charts. Conclusion: Through the basketball shooting recognition system based on machine learning. Without the limitation of equipment resources and human resources. It can record the shooting distribution and shooting goal during shooting practice, and present them in visual charts. However, due to the current technological development, the recognition results are still vulnerable to the background environment. So, accumulate enough data, making machines learn continuously is the direction of efforts in the future.

主题分类 社會科學 > 體育學
参考文献
  1. 李逸驊,蔡琪揚,陳韋翰,黃冠勛,戴沁琳(2019)。穿戴加速規測量大專籃球聯賽公開男生組第一級隊伍之運動強度。大專體育學刊,21(4),342-352。
    連結:
  2. 李雲光(2007)。不同投籃姿勢各關節運動學分析。大專體育學刊,9(4),113-123。
    連結:
  3. 周育晨,李恆儒(2020)。以穿戴式裝置探討不同專項位置籃球員與訓練情境之運動負荷。體育學報,53(3),315-326。
    連結:
  4. 相子元,石又,何金山(2012)。感測科技於運動健康科學之應用。體育學報,45(1),1-12。
    連結:
  5. 徐琮瑋,丁美琴,吳正杰(2012)。新舊三分線投籃之動作分析-以大專籃球選手為例。輔仁大學體育學刊,11,138-151。
    連結:
  6. 葉良志(2010)。女子籃球規格改變對投籃動作之影響。運動研究,19(1),23-33。
    連結:
  7. 蔡琪揚,李逸驊,相子元(2019)。加速規是否能判斷籃球之運動強度?。體育學報,52(3),319-328。
    連結:
  8. 謝兆騰,鍾寶弘(2016)。以智慧感應籃球比較罰球入籃角度與出手速度之研究。華人運動生物力學期刊,13(1),27-32。
    連結:
  9. Aroganam, G.,Manivannan, N.,Harrison, D.(2019).Review on wearable technology sensors used in consumer sport applications.Sensors,19(9)
  10. Chen, H. T.,Chou, C. L.,Fu, T. S.,Lee, S. Y.,Lin, B-S.(2012).Recognizing tactic patterns in broadcast basketball video using player trajectory.Journal of Visual Communication and Image Representation,23(6),932-947.
  11. Chen, H. T.,Tien, M. C.,Chen, Y. W.,Tsai, W. J.,Lee, S. Y.(2009).Physics-based ball tracking and 3D trajectory reconstruction with applications to shooting location estimation in basketball video.Journal of Visual Communication and Image Representation,20(3),204-216.
  12. Chen, L. H.,Chang, H. W.,Hsiao, H. A.(2017).Player trajectory reconstruction from broadcast basketball video.Proceedings of the 2nd International Conference on Biomedical Signal and Image Processing
  13. Csapo, P.,Raab, M.(2014)."Hand down, man down." Analysis of defensive adjustments in response to the hot hand in basketball using novel defense metrics.PLoS One,9(12),1-25.
  14. FIBA (2020). FIBA 2020 Official Basketball Rules. Scribbr. http://www.fiba.basketball/documents
  15. Nunome, H.,Doyo, W.,Sakurai, S.,Ikegmai, Y.,Yabe, K.(2002).A kinematic study of the upper-limb motion of wheelchair basketball shooting in tetraplegic adults.Journal of Rehabilitation Research and Development,39,63-71.
  16. Shah, R. C.,Romijnders, R.(2016).Applying deep learning to basketball trajectories.KDD 2016, Large Scale Sports Analytic Workshop
  17. Vanhelst, J.,Theunynck, D.,Gottrand, F.,Béghin, L.(2010).Reliability of the RT3 accelerometer for measurement of physical activity in adolescents.Journal of Sports Sciences,28(4),375-379.
  18. Wen, P. C.,Cheng, W. C.,Wang, Y-S.,Chu, H. K.,Tang, N. C.,Liao, H. Y. M.(2016).Court Reconstruction for Camera Calibration in Broadcast Basketball Videos.IEEE Transactions on Visualization and Computer Graphics,22(5),1517-1526.
  19. Yoon, Y.,Hwang, H.,Choi, Y.,Joo, M.,Oh, H.,Park, I.,Lee, K.,Hwang, J.(2019).Analyzing basketball movements and pass relationships using realtime object tracking techniques based on deep learning.IEEE Access,7,56564-56576.
  20. 李宏毅(2016).專題-什麼是深度學習.國立交通大學丘成桐中心.
  21. 李建興,游凱倫,林應璞(2010)。即時動態車牌辨識。技術學刊,25(2),151-165。
  22. 科技部 (2018)。「精準科研助攻,再創運動巔峰」精準運動科學研究專案計畫啟動。https://www.most.gov.tw/folksonomy/detail?cv=1&article_uid=ca77e278-b376-46c1-b622-ee3c826cf6d5&l=CH&menu_id=9aa56881-8df0-4eb6-a5a7-32a2f728
  23. 馬國濂(2011)。國立交通大學多媒體工程研究所。
  24. 張傑閔,張厥煒(2007)。運動視訊場景中動態物件搜尋與追蹤方法。臺北科技大學學報,40(1),59-73。
  25. 陳錦偉(2009)。大專男子籃球選手三分線投籃動作之生物力學特性分析。大專體育學術專刊,98 年度,601-609。
  26. 覃素莉(2002)。國立體育大學教練研究所。
  27. 蔡旻諺,林政宏,林欣穎,張家豪(2020)。以人工智慧與機器視覺為基礎之籃球自主訓練系統﹝摘要﹞。臺灣運動生物力學年會暨運動科學研討會,桃園市,台灣:
  28. 蔡保田(1987).教育研究方法論.:中國教育學會.
  29. 簡宗宏(2019)。中原大學機械工程研究所。