题名

VINE COPULA APPROACH FOR MULTIVARIATE AND MULTI-DAY AHEAD VALUE AT RISK AND EXPECTED SHORTFALL FORECASTING

DOI

10.6292/AFPF.202212_(10).0007

作者

Robina Iqbal;Ghulam Sorwar;Taufiq Choudhry

关键词

Finance ; Simulation ; Canonical Vine (C-vine) ; Drawable Vine (D-vine) ; Multi-Day Value-at-Risk (VaR) and Expected Shortfall (ES) ; Vine Copulas

期刊名称

Advances in Financial Planning and Forecasting

卷期/出版年月

10期(2022 / 12 / 01)

页次

163 - 196

内容语文

英文

中文摘要

In this paper, we construct vine copula models for multivariate stock portfolio returns to estimate one-day-ahead and multi-day ahead Value-at- Risk (VaR) and Expected Shortfall (ES) using Monte Carlo simulation. This is then compared with the VaR and ES using the dynamic conditional correlation (DCC) method. For the multi-day horizon, we use Monte Carlo simulation to simulate the share prices h-days ahead. The simulation-based method allows us to calculate VaR and ES for multivariate data at any horizons of interest and hence to calculate the entire term structure of risk. Using seven stocks from the DAX 30 as a case in point, we demonstrate the overall superiority of the copula-based method over the widely accepted DCC method. VaR and ES back-testing results indicate that vine copula significantly outperforms the DCC approach over a one-day horizon. This performance by the copula-based method is maintained across a multi-day horizon. Our findings suggest that institutions that use copula models to estimate their risk capital will need to set aside less capital to meet regulatory needs, than would otherwise be the case.

主题分类 社會科學 > 經濟學
参考文献
  1. Aas, K.,Czado, C.,Frigessi, A.,Bakken, H.(2009).Pair-copula constructions of multiple dependence.Insurance: Mathematics and Economics,44,182-198.
  2. Allen, D. E.,Ashraf, M. A.,McAleer, M.,Powell, R. J.,Singh, A. K.(2013).Financial dependence analysis: Applications of vine copulas.Statistica Neerlandica,67,403-435.
  3. Allen, D. E.,McAleer, M.,Singh, A. K.(2014).,Christchurch, New Zealand:University of Canterbury.
  4. Allevi, E.,Boffino, B.,De Giuli, M. E.,Oggioni, G.(2019).Analysis of long-term natural gas contracts with vine copulas in optimization portfolio problems.Annals of Operations Research,274,1-37.
  5. Aloui, R.,Aïssa, M. S. B.(2016).Relationship between oil, stock prices and exchange rates: A vine copula based GARCH method.North American Journal of Economics and Finance,37,458-471.
  6. Aloui, R.,Aïssa, M.,Nguyen, D. K.(2011).Global financial crisis, extreme interdependences, and contagion effects: The role of economic structure?.Journal of Banking and Finance,35,130-141.
  7. Artzner, P.,Delbaen, F.,Eber, J.-M.,Heath, D.(1999).Coherent measures of risk.Mathematical Finance,9,203-228.
  8. Asai, M.,McAleer, M.(2009).Multivariate stochastic volatility, leverage and news impact surfaces.The Econometrics Journal,12,292-309.
  9. Basel Committee on Banking Supervision(2009).Revisions to the Basel II market risk framework.
  10. Basel Committee on Banking Supervision(2019).Minimum capital requirements for market risk.
  11. Bedford, T.,Cooke, R. M.(2001).Probability density decomposition for conditionally dependent random variables modelled by vines.Annals of Mathematics and Artificial Intelligence,32,245-268.
  12. Bedford, T.,Cooke, R. M.(2002).Vines-A new graphical model for dependent random variables.Annals of Statistics,30,1031-1068.
  13. Berg, D.,Aas, K.(2009).Models for construction of multivariate dependence: A comparison study.European Journal of Finance,15,639-659.
  14. Berger, T.(2013).Forecasting value-at-risk using time varying copulas and EVT return distributions.International Economics,133,93-106.
  15. Brechmann, E. C.,Czado, C.(2013).Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50.Statistics & Risk Modelling,30,307-342.
  16. Cherubini, U.,Luciano, E.,Vecchiato, W.(2004).Copula methods in finance.Chichester, UK:John Wiley & Sons.
  17. Christoffersen, P. F.(2012).Elements of financial risk management.San Diego, CA:Academic Press.
  18. Christoffersen, P. F.,Diebold, F.(2000).How Relevant is volatility forecasting for financial risk management?.The Review of Economics and Statistics,12,12-22.
  19. Czado, C.(2010).Pair-copula constructions of multivariate copulas.Copula theory and its applications, Lecture notes in statistics,Berlin, Germany:
  20. Czado, C.,Schepsmeier, U.,Min, A.(2012).Maximum likelihood estimation of mixed C-vines with application to exchange rates.Statistical Modelling,12,229-255.
  21. Danielsson, J.(2002).The emperor has no clothes: Limits to risk modelling.Journal of Banking and Finance,26,1273-1296.
  22. Danielsson, J.,Zigrand, J. P.(2006).On time-scaling of risk and the square root-of-time-rule.Journal of Banking and Finance,30,2701-2713.
  23. de Melo Mendes, B. V.,Semeraro, M. M.,Leal, R. P. C.(2010).Pair-copulas modelling in finance.Financial Markets and Portfolio Management,24,193-213.
  24. Degiannakis, S.,Dent, P.,Floros, C.(2012).A Monte Carlo simulation approach to forecasting multiperiod value-at-risk using the FIGARCH-skT Specification.The Manchester School,82,71-102.
  25. Degiannakis, S.,Potamia, A.(2016).Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data.International Review of Financial Analysis,49,176-190.
  26. Dionne, G.,Duchesne, P.,Pacurar, M.(2009).Intraday value at risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange.Journal of Empirical Finance,16,777-792.
  27. Dissmann, J. F.,Brechmann, E. C.,Czado, C.,Kurowicka, D.(2013).Selecting and estimating regular vine copula and application to financial returns.Computational Statistics & Data Analysis,59,52-69.
  28. Dowd, K.,Blake, D.,Cairns, A.(2004).Long‐term value at risk.The Journal of Risk Finance,5,52-57.
  29. Engle, R. F.(2004).Risk and volatility: Econometric models and financial practice.The American Economic Review,94,405-420.
  30. Engle, R. F.(2002).Dynamic conditional correlation.Journal of Business and Economics Statistics,20,339-350.
  31. Engle, R. F.,Sheppard, K.(2001).,Cambridge, MA:National Bureau of Economic Research.
  32. Fischer, M.,Kock, C.,Schluter, S.,Weigert, F.(2009).An empirical analysis of multivariate copula models.Quantitative Finance,9,839-854.
  33. Gonzalez-Rivera, G.,Lee, T. H.,Mishra, S.(2004).Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood.International Journal of Forecasting,20,629-645.
  34. Haff, I. H.(2012).Comparison of estimators for pair-copula constructions.Journal of Multivariate Analysis,110,91-105.
  35. Hakim, A.,McAleer, M.(2009).Econometric Institute Research PapersEconometric Institute Research Papers,未出版
  36. Hakim, A., McAleer, M., & Chan, F. (2007). Forecasting portfolio value-at-risk for international stocks, bonds and foreign exchange. Working Paper, University of Western Australia, Perth, Australia.
  37. Hartz, C.,Mittnik, S.,Paolella, M.(2006).Accurate value-at-risk forecasting based on the normal-GARCH model.Computational Statistics and Data Analysis,51,2295-2312.
  38. Hoogerheide, L.,van Dijk, H. K.(2010).Bayesian forecasting of value at risk and expected shortfall using adaptive importance sampling.International Journal of Forecasting,26,231-247.
  39. Huang, A.(2010).An optimization process in value-at-risk estimation.Review of Financial Economics,19,109-116.
  40. Jarque, C. M.,Bera, A. K.(1980).Efficient tests for normality, homoscedasticity and serial independence of regression residuals.Economics Letters,6,255-259.
  41. Joe, H.(1996).Families of multivariate distributions with given margins and m(m − 1)/2 Bivariate Dependence Parameters.Distributions with fixed marginal and related topics,Hayward, CA:
  42. Joe, H.,Li, H.,Nikoloulopoulos, A. K.(2010).Tail dependence functions and vine copulas.Journal of Multivariate Analysis,101,252-270.
  43. Joe, H.,Xu, J. J.(1996).,未出版
  44. Kakouris, L.,Rustem, B.(2014).Robust portfolio optimization with copulas.European Journal of Operational Research,235,28-37.
  45. Kim, D.,Kim, J.-M.,Liao, S.-M.,Jung, J. S.(2013).Mixture of D-vine copulas for modelling dependence.Computational Statistics and Data Analysis,64,1-19.
  46. Kurowicka, D.,Cooke, R. M.(2006).Uncertainty analysis with high dimensional dependence modelling.New York, NY:Wiley.
  47. Kurowicka, D,Cooke, R. M.(2004).Distribution-free continuous Bayesian belief nets.Fourth International Conference on Mathematical Methods in Reliability Methodology and Practice,Santa Fe, NM:
  48. Liu, B. Y.,Ji, Q.,Fan, Y.(2017).Dynamic return-volatility dependence and risk measure of CoVaR in the oil market: A time-varying mixed copula model.Energy Economics,68,53-65.
  49. Ljung, G. M.,Box, G. E. P.(1978).On a measure of a lack of fit in time series models.Biometrika,65,297-303.
  50. Lopez, J. A.(1999).Methods for evaluating value-at-risk estimates.Federal Reserve Bank of San Francisco Review,2,3-15.
  51. Loretan, M.,English, W. B.(2000).Board of Governors of the Federal Reserve System International Finance Discussion PapersBoard of Governors of the Federal Reserve System International Finance Discussion Papers,未出版
  52. McNeil, A. J.,Frey, R.,Embrechts, P.(2005).Quantitative risk management: Concepts, techniques and tools.Princeton, NJ:Princeton University Press.
  53. Min, A.,Czado, C.(2010).Bayesian inference for multivariate copulas using pair-copula constructions.Journal of Financial Econometrics,8,511-546.
  54. Nagler, T.,Czado, C.(2016).Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas.Journal of Multivariate Analysis,151,69-89.
  55. Nasri, B. R.,Rémillard, B. N.(2019).Copula-based dynamic models for multivariate time series.Journal of Multivariate Analysis,172,107-121.
  56. Nelson, R. B.(2006).An introduction to copulas.Berlin, Germany:Springer.
  57. Ozun, A.,Cifter, A.(2007).MPRA PaperMPRA Paper,未出版
  58. Palaro, H.,Hotta, L.(2006).Using conditional copula to estimate value at risk.Journal of Data Science,4,93-115.
  59. Pesaran, H.,Schleicher, C.,Zaffaroni, P.(2009).Model averaging in risk management with an application to futures markets.Journal of Empirical Finance,16,280-305.
  60. Pourkhanali, A.,Kim, J.-M.,Tafakori, L.,Fard, F. A.(2016).Measuring systemic risk using vine-copula.Economic Modelling,53,63-74.
  61. Reboredo, J. C.,Ugolini, A.(2015).A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector.The North American Journal of Economics and Finance,32,98-123.
  62. Semenov, A.(2009).Risk factor beta conditional value-at-risk.Journal of Forecasting,28,549-558.
  63. Shih, J.,Louis, T. A.(1995).Inference on association parameter in copula models for bivariate survival data.Biometrics,51,1384-1399.
  64. Silbermayr, L.,Jammernegg, W.,Kischka, P.(2017).Inventory pooling with environmental constraints using copulas.European Journal of Operational Research,263,479-492.
  65. Sklar, A.(1959).Fonctions de répartition à n dimensions et leurs marges.Publications del’Institut de Statistique de L’Universite de Paris,8,229-231.
  66. So, M. K. P.,Yeung, C. Y. T.(2014).Vine-copula GARCH model with dynamic conditional dependence.Computational Statistics and Data Analysis,76,655-671.
  67. Sriboonchitta, S.,Liu, J.,Kreinovich, V.,Nguyen, H. T.(2013).Departmental Technical Reports PaperDepartmental Technical Reports Paper,未出版
  68. Stöber, J.,Schepsmeier, U.(2013).Estimating standard errors in regular vine copula models.Computational Statistics,28,2679-2707.
  69. Valle, D. L.,De Giuli, M. E.,Tarantola, C.,Manelli, C.(2016).Default probability estimation via pair copula constructions.European Journal of Operational Research,249,298-311.
  70. Vrac, M.,Chédin, A.,Diday, E.(2005).Clustering a global field of atmospheric profiles by mixture decomposition of copulas.Journal of Atmospheric and Oceanic Technology,22,1445-1459.
  71. Wang, J.-N.,Yeh, J. H.,Chen, N. Y. P.(2011).How accurate is the square-root-of-time rule in scaling tail risk: A global study.Journal of Banking & Finance,35,1158-1169.
  72. Wu, S.(2014).Construction of asymmetric copulas and its application in two-dimensional reliability modelling.European Journal of Operational Research,238,476-485.
  73. Yuan, X.,Tang, J.,Wong, W. K.,Sriboonchitta, S.(2020).Modeling co-movement among different agricultural commodity markets: A copula-GARCH approach.Sustainability,12,393.
  74. Zhang, B.,Wei, Y.,Yu, J.,Lai, X.,Peng, Z.(2014).Forecasting VaR and ES of stock index portfolio: A vine copula method.Physica A: Statistical Mechanics and Its Applications,416,112-124.
  75. Zhou, R.,Ji, M.(2021).Modelling mortality dependence: An application of dynamic vine copula.Insurance: Mathematics and Economics,99,241-255.
  76. Zhu, B.,Ye, S.,He, K.,Chevallier, J.,Xie, R.(2018).Measuring the risk of European carbon market: An empirical mode decomposition-based value at risk approach.Annals of Operations Research,281,1-23.