题名

The State-Space Discrete-Time Model with a State Delay

并列篇名

含有狀態延遲之狀態空間離散模式

作者

陳春明(Chuen-Ming Chen);鄭永業(Yong-Ya Zheng)

关键词

state space ; delay time ; discrete-time model ; 狀態空間 ; 延遲時間 ; 離散模式

期刊名称

萬能學報

卷期/出版年月

41期(2019 / 07 / 01)

页次

139 - 151

内容语文

英文

中文摘要

A new approach for model conversion of a state-delay system is proposed in this paper. The derivation and the main results are all in the state-space formation such that the further application and design of a signal system can be more convenient. To proceed this work in continuous-to-discrete model conversion, the digitally sampling period is larger than the delay time is considered, and the discrete-time model is especially derived from the continuous-time system so that it has a wider range for sampling period in real system implementation. Moreover, a reasonably larger sampling period in the digital model can decrease the computation time in the processor system. In the discrete-to-continuous model conversion, a simple method is also proposed to determine the unknown state-delay time from the available discrete-time model, and thus the generated continuous-time model is established through some existing relationship, and the delay time also can be evaluated for the originally continuous model of physical systems.

英文摘要

本文針對狀態延遲系統提出一個新的模式轉換方法。文中的推導與主要的結果都以狀態空間的架構呈現,使得在信號系統的進一步運用與設計能更加方便。在進行連續至數位的模式轉換工作中,考慮了數位取樣週期比延遲時間大的情形,以特殊的推導方式.由連續時間系統中求得離散時間模式,使得在真實的系統執行時,可具有較寬廣的取樣週期。此外,在數位模式中,一個合理較大的取樣週期可以減少處理器系統的計算時間。在數位至連續模式轉換中,提出一種簡易的方法,由所獲取的離散時間模式存在的一些關係中,計算求得未知的狀態延遲時間,進而回復其原始連續時間的物理系統模式。

主题分类 基礎與應用科學 > 基礎與應用科學綜合
工程學 > 工程學綜合
社會科學 > 社會科學綜合
社會科學 > 社會學
参考文献
  1. Alekal, Y..Minneapolis, MN, U.S.A.,University of Minnesota.
  2. Amstrong, F. S.,Tripp, J. S.(1981).NASA Tech PaperNASA Tech Paper,Washionton, D.C., U.S.A.:NASA.
  3. Astrom, K. J.,Wittenmark, B.(1990).Computer-Controller Systems-Theory and Design.Englewood Cliffs, NJ, U.S.A.:Prentice Hall.
  4. Chen, C. M.,Chang, K. E.(1998).The sampled-data model of a system with both input and state lag.Journal of Control System and Technology,6,51-58.
  5. Chyung, D. H.,Lee, E. B.(1966).Linear optimal control problems with delay.SIAM Journal on Control Optimization,36,540-575.
  6. Eller, D. H.,Aggarwal, J. K.,Banks, H. T.(1969).Optimal control of linear time- delay systems.IEEE Transactions on Automatic Control,10,678-687.
  7. Jury, E. I.(1964).Theory and Application of Z-Transform Method.New York, NY, U.S.A.:Wiely.
  8. Manitius, A.,Olbrot, A.(1979).Finite spectrum assignment problem for systems with delays.IEEE Transactions on Automatic Control,13,541-553.
  9. Muller, C. E.(1971).Minneapolis, MN, U.S.A.,University of Minnesota.
  10. Ross, D. W.(1971).Controller design for time lag systems via a quadratic criterion.IEEE Transactions on Automatic Control,9,664-672.
  11. Shieh, L. S.,Tasi, J. S. H.,Lian, S. R.(1986).Terming continuous-time state equations from discrete-time state equations via the principal qth root method.IEEE Trans. Automatic Control,AC-31,454-457.
  12. Shieh, L. S.,Wang, H.,Yates, R. E.(1980).Discrete-continuous model conversion.Appl. Math. Modeling,4,449-455.
  13. Tsien, H. S.(1954).Linear Systems with Time Lag.New York, NY, U.S.A.:McGraw-Hill.