题名 |
藉由縮減候選項目集數量提升探勘關聯規則之效能 |
并列篇名 |
Improving the Efficiency of MiningAssociation Rules by Reducing the Amount of Candidate Itemsets |
DOI |
10.7060/KNUJST.201112.0059 |
作者 |
陳垂呈(Chui-Cheng Chen) |
关键词 |
資料探勘 ; 關聯規則 ; MAR_A ; MAR_R ; data mining ; association rule ; MAR_A ; MAR_R |
期刊名称 |
高雄師大學報:自然科學與科技類 |
卷期/出版年月 |
31期(2011 / 12 / 01) |
页次 |
59 - 71 |
内容语文 |
繁體中文 |
中文摘要 |
本研究提出兩個方法從交易資料中探勘關聯規則:一是設計一個稱之為MAR_A演算法探勘關聯規則,其修改之前演算法組合形成候選項目集的方式,在避免產生重複候選項目集的情況下,進而達到提升探勘關聯規則的效能;再者,設計一個稱之為MAR_R演算法探勘關聯規則,其利用MAR_A演算法組合形成候選項目集的方式,並融合高頻項目集分群的概念,可在減少搜尋高頻項目集數量的情況下產生候選項目集,進而達到提升探勘關聯規則的效能。從實驗評估中顯示,本研究提出之兩個演算法的執行效能均優於CDAR演算法及Apriori演算法。 |
英文摘要 |
This paper proposes two methods to mine association rules from transactional data. The first method, called MAR_A algorithm, modifies the approach of generating candidate itemsets of the previous algorithm. The MAR_A algorithm can improve the performance of mining association rules by avoiding generating the duplicate candidate itemsets. The second method, called MAR_R algorithm, takes an approach to generating candidate itemsets of the MAR_A algorithm and clustering frequent itemsets. The MAR_R algorithm can better improve the performance of mining association rules by reducing the search space of frequent itemsets. The experiments show that both algorithms have better running time than the CDAR algorithm or the Apriori algorithm. |
主题分类 |
基礎與應用科學 >
基礎與應用科學綜合 社會科學 > 教育學 |