题名

空間大數據基礎架構平台之簡介

并列篇名

Introduction to Geospatial Big Data Infrastructure

作者

張智安(Tee-Ann Teo);楊筑鈞(Chu-Chun Yang);傅于洳(Yu-Ju Fu)

关键词

空間大數據 ; 開放資料 ; 基礎架構 ; 衛星影像 ; Geospatial Big Data ; Open Data ; Infrastructure ; Satellite Imagery

期刊名称

國土測繪與空間資訊

卷期/出版年月

6卷2期(2018 / 07 / 01)

页次

97 - 116

内容语文

繁體中文

中文摘要

Geospatial Big Data Infrastructure(GBDI)是指在雲端平台中整合巨量空間資料的平台,為現今空間資訊領域重要的發展方向。現行以巨量遙測影像為基礎的平台包含Amazon Earth on AWS、Google Earth Engine(GEE)、DigitalGlobe Geospatial Big Data Solution、Planet Lab Planet Explorer及Data Cube等。這類平台主要的特色是整合巨量多時序的遙測影像,可快速觀察及分析地表任一位置的時空變化,探討環境動態過程,以GEE為例,GEE可直接存取影像進行應用分析,如全球森林改變等。本文目的為介紹現有GBDI平台空間資料數據集、平台功能及應用範例,並以GEE平台建立台灣地區無雲影像為應用案例,說明GBDI的概念及可能應用。

英文摘要

Geospatial Big Data Infrastructure (GBDI) refers to a platform that integrates a huge amount of spatial data on the same platform and is an important development in geospatial technology. Several GBDI platforms has been established by government or company, for example, Amazon Earth on AWS, Google Earth Engine (GEE), Digital Globe Geospatial Big Data Solution, Planet Lab Planet Explorer, and Data Cube. The feature of these platforms is the integration of huge amount of time-series satellite images, which can quickly visualize and analyze the spatial-temporal variations of any position on the earth's surface. Taking GEE as an example, GEE can directly access time-series satellite images for different applications and analysis, e.g. global forest change. In order to introduce the concept and possible applications of GBDI, this study introduces the existing GBDI platforms in the way of data sets, functions and applications. Moreover, Taiwan cloud free image generation by GEE was also provided as a case study.

主题分类 人文學 > 地理及區域研究
参考文献
  1. (2015).Remote Sensing Handbook.
  2. Butler, D.(2014).Many eyes on Earth.Nature,505(7482),143-144.
  3. Casu, F.,Manunta, M.,Agram, P. S.,Crippen, R. E.(2017).Big remotely sensed data: Tools, applications and experiences.Remote Sensing of Environment,202,1-2.
  4. DigitalGlobe(2016).Creating business value from high resolution building footprints and building attributes at continental scale.Proceedings of the 15th GSDI World Conference,Taipei:
  5. Gorelick, N.,Hancher, M.,Dixon, M.,Ilyushchenko, S.,Thau, D.,Moore, R.(2017).Google earth engine: Planetary-scale geospatial analysis for everyone.Remote Sensing of Environment,202,18-27.
  6. Klein, T.,Nilsson, M.,Persson, A.,Håkansson, B.(2017).From open data to open analyses-New opportunities for environmental applications?.Environments,4(2),32.
  7. Lewis, A.,Oliver, S.,Lymburner, L.,Evans, B.,Wyborn, L.,Mueller, N.,Raevksi, G.,Hooke, J.,Woodcock, R.,Sixsmith, J.,Wu, W.,Tan, P.,Li, F.,Killough, B.,Minchin, S.,Roberts, D.,Ayers, D.,Bala, B.,Dwyer, J.,Dekker, A.,Dhu, T.,Hicks, A.,Ip, A.,Purss, M.,Richards, C.,Sagar, S.,Trenham, C.,Wang, P.,Wang, L. W.(2017).The Australian geoscience data cube-Foundation and lessons learned.Remote Sensing of Environment,202,276-292.
  8. McFedries, P.(2011).The coming data deluge.IEEE Spectrum,48(2),19.
  9. Moldestad, Ø. Y.(2016).Data access interface for innovation on earth-Observation data.Proceedings of the Master's thesis,Norway:
  10. Purss, M.B.J.,Peterson, P.,Gibb, R.,Samavati, F.,Strobl, P.(2016).Discrete global grid systems for handling big data from space.Proceedings of the 2016 Conference on Big Data from Space 2016,Santa Cruz de Tenerife:
  11. Robinson, A. C.,Demšar, U.,Moore, A. B.,Buckley, A.,Jiang, B.,Field, K.,Kraak, M. J.,Camboim, S. P.,Sluter, C. R.(2017).Geospatial big data and cartography: Research challenges and opportunities for making maps that matter.International Journal of Cartography,3(sup 1),1-29.
  12. Wagner, W.(2015).Big data infrastructures for processing Sentinel data.Photogrammetric week,15,93-104.
  13. 邱祈榮(2017)。國際Data Cube 最新發展。台灣Data Cube 使用研討會