题名

探討以小型旋翼無人機監測水庫邊坡之可行性:以臺北翡翠水庫為例

并列篇名

Discuss the Use of Small Rotor Drones to Monitor the Slope of the Reservoir Feasibility: Take Taipei Feicui Reservoir as An Example

作者

張若瑄(Jo-Hsuan Chang);江志展(Chih-Chan Chiang);吳芝伶(Chih-Ling Wu);管志偉(Chih-Wei Kuan)

关键词

無人飛行載具 ; 變異分析 ; 量化分析 ; 效益最大化 ; Collapse ground interpretation ; Quantitative analysis ; Unmanned Aerial Vehicle ; Variation analysis

期刊名称

國土測繪與空間資訊

卷期/出版年月

9卷2期(2021 / 07 / 01)

页次

129 - 151

内容语文

繁體中文

中文摘要

水庫是台灣重要的集水設施,為了維護水庫集水區周邊的環境,本研究利用多旋翼無人機作為拍攝工具進行環境作業監測與環境差異調查分析,隨著無人機的運用日新月異,較不受天候與空域影響,尤其是運用在颱風過後多雲的天氣時,可執行災害現場的拍攝任務,並且得到即時的救災資訊,同時也不用耗費較多的人力資源,也可取得較佳的影像品質。本次研究通過拼接後的正射影像,來分析土地崩塌變異情形,再套疊潛勢邊坡變異進行現況分析,後續可提供給管理單位作為調查與監控之參考。最後通過比對人工目視及無人機拍攝這兩種方法,分析人力、時間和金錢成本效益,達到效益最大化。

英文摘要

Reservoirs are essential to water collection in Taiwan. In order to maintain the environment around the water catchment area of the reservoir, this research used multi-rotor drones as the image-capture tool for environmental monitoring, environment differential investigation and analysis. With the rapid development of drones, drone operations are relatively unaffected by the weather and airspace. Especially in cloudy days after typhoon, we can obtain instant information of disaster, reducing the manpower required to have better image quality simultaneously. In this study, we used spliced orthophotos to analyze the landslides variation. Through overlapping the potential slope variation, current situation analysis can be provided to the management unit as the reference for investigation and monitoring. Eventually, comparing the methods of manual visual inspection and unmanned aerial vehicle shooting, the effectiveness of manpower, time-consuming were analyzed to maximize the benefits.

主题分类 人文學 > 地理及區域研究
参考文献
  1. Douterloigne, K.,Gautama, S.,Philips, W.(2010).On the accuracy of 3D landscapes from UAV image data.Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International
  2. Faugeras, O.(1992).What Can Be Seen in the Three Dimensions with an Uncalibrated Stereo Rig?.Proceedings of the 2th European Conference on Computer Vision
  3. Fisher, R.,Dawson-Howe, K.,Fitzgibbon, A.,Robertson, C.,Trucco, E.(2005).Dictionary of Computer Vision and Image Processing.Hoboken:John Wiley & Sons.
  4. Lei, C.,Wu, F. C.,Hu, Z. Y.(2001).Kruppa Equations and Camera Selfcalibration.Acta Automatica Sinica,27(5),621-630.
  5. Maybank, S.,Faugeras, O.(1992).A Theory of Self-calibration of a Moving Camera.International Journal of Computer Vision,8(2),123-151.
  6. Pollefeys, M.(1999).Katholieke University Leuven.
  7. Szeliski, R.(2010).Computer Vision: Algorithms and Applications.Springer.
  8. Westoby, M.J.,Brasington, J.,Glasser, N. F.,Hambrey, M. J.,Reynolds, J. M.(2010).,未出版
  9. 汪磊(2002)。中國人民解放軍信息工程大學。
  10. 許斐涵(2014)。國立臺灣師範大學地球科學系。
  11. 趙智凡,潘偉庭,楊明德(2016)。應用多視立體及運動回復結構之三維場景重構。航空及遙測學刊,20(2),129-137。
  12. 蕭震洋,謝寶珊,冀樹勇(2011)。應用非常規攝影量測評估國道 3 號 3.1 公里崩塌事件之土方量。中華水土保持學報,42(2),120-130。
  13. 蘇柏軒,蕭宇伸(2013)。國立中興大學水土保持學系。