题名 |
Support Vector Regression for the Prediction of Methylene Blue Adsorption of Bentonite |
并列篇名 |
支持向量回归用于润土吸蓝量的预报 |
DOI |
10.6338/JDA.200702_2(1).0008 |
作者 |
刘太昂(Tai-Ang Liu) |
关键词 |
支持向量回归 ; 润土 ; 定量预报 ; support vector regression ; Bentonite ; quantitative prediction |
期刊名称 |
Journal of Data Analysis |
卷期/出版年月 |
2卷1期(2007 / 02 / 01) |
页次 |
101 - 111 |
内容语文 |
英文 |
中文摘要 |
本文用新近提出的、特别适合于小样本多变量的支持向量回归(Support vector regression)方法建立润土的五个参数与吸蓝量之间关系的预报模型。用“留一法”检验模型的预报能力,并将结果与传统的方法(人工神经网络、多元线性回归)进行比较,结果表明:支持向量回归的预报准确率比人工神经网络和多元线性回归方法高。 |
英文摘要 |
Support vector machine proposed by Vapnik is a newly developed technique for data mining. It is suitable for the data processing based on finite number of training samples, with special technique to restrict overfitting. In this work, support vector regression has been used for correlating and modeling the relationships between the parameters and methylene blue adsorption of Bentonite. The prediction accuracy of the model was discussed on the basis of the leave-one-out cross-validation. The results show that the prediction accuracy of SVR model was higher than those of back propagation artificial neural network (BP ANN), multiple linear regression (MLR) methods. |
主题分类 |
基礎與應用科學 >
資訊科學 基礎與應用科學 > 統計 社會科學 > 管理學 |
参考文献 |
|