题名 |
数据挖掘在信用卡信用评分中的应用研究 |
并列篇名 |
Credit Scoring Models for Credit Card by Using Data Mining Methods |
DOI |
10.6338/JDA.200810_3(5).0010 |
作者 |
來升強(Sheng-Qiang Lai);王桂明(Gui-Ming Wang);方匡南(Kuang-Nan Fang);陈希(Xi Chen);王昱莹(Yu-Ying Wang);郑美坊(Mei-Fang Zheng) |
关键词 |
数据挖掘 ; 信用卡 ; 违约户 ; 信用评分模型 ; Data Mining ; Credit Card ; Defaulting Customer ; Credit Scoring Models |
期刊名称 |
Journal of Data Analysis |
卷期/出版年月 |
3卷5期(2008 / 10 / 01) |
页次 |
143 - 157 |
内容语文 |
簡體中文 |
中文摘要 |
数据挖掘已在许多金融机构的经营决策中发挥着越来越重要的作用,本文旨在将数据挖掘技术应用于构建信用卡信用评分模型方面做一些研究,首先用主成分分析从客户原始数据中提取出一个变量用以衡量客户的违约状况,作为模型的因变量,接着使用五种数据挖掘技术构建信用卡信用评分模型,并进行对比分析,最后根据Logistic模型对通过信用卡审核的客户进行进一步地细分做了一些尝试。 |
英文摘要 |
Data Mining has been playing an important role in many financial institution's management. The purpose of this paper is to do some research on the application of data mining in the credit scoring models for credit card. For the details, we first implement PCA to extract a comprehensive variable from the raw data to indicate a customer's default or not and as a dependent variable for the models. Then five data mining methods are applied to build the credit scoring models and each of thease models' performance are compared. Finally, we make an attempt to further classify those non-defaulting customers predicted by Logistic model. |
主题分类 |
基礎與應用科學 >
資訊科學 基礎與應用科學 > 統計 社會科學 > 管理學 |
参考文献 |
|