题名

Generating Singular Multi-Normal Random Vector by Using Square Root Matrix Approach

并列篇名

奇特多元常態分佈隨機向量產生法-運用平方根矩陣法

DOI

10.6338/JDA.200812_3(6).0002

作者

李泰明(Tai-Ming Lee)

关键词

奇特多元常態分佈 ; Cholesky分解法 ; 平方根矩陣法 ; 蒙地卡羅模擬 ; Singular multi-normal distribution ; Cholesky decomposition ; Square root matrix ; Monte Carlo simulation

期刊名称

Journal of Data Analysis

卷期/出版年月

3卷6期(2008 / 12 / 01)

页次

17 - 29

内容语文

英文

中文摘要

當共變矩陣或相關矩陣為半正定時,多元常態分佈隨機向量的聯合分配稱為奇特多元常態。當隨機向量有此特性時,傳統的Cholesky分解法將遇到數值上的障礙,原因是此分解法的共變異矩陣必須為正定才能使用。在此文章中作者提出了平方根矩陣的方法來克服這個問題,並詳細說明如何運算一個半正定共變異矩陣的平方根矩陣。利用平方根矩陣的方法可以分解這個矩陣,藉以完成奇特多元常態分佈的蒙地卡羅模擬。運用數值的例子和圖解,可以說明及展示此方法的正確性,及奇特多元常態分佈的機率性質。一些創新的繪圖技術也同時呈現奇特性的意義。

英文摘要

The joint distribution of a random vector is called singular multi-normal distribution, when the corresponding variance covariance matrix or the correlation matrix is only positive semi-definite. To generate the random vector with this property, traditional Cholesky decomposition method is failed because it needs the variance covariance matrix to be positive definite. In this paper, I propose a square matrix approach to overcome this problem. Specifying a particular positive semi-definite variance covariance matrix, the square root matrix approach can still decompose this matrix and perform the Monte Carlo simulation of singular multi-normal distribution. Several numerical example and graphical representation are illustrated as well as some probability evaluation. The techniques to present the singularity are developed and applied to the numerical examples.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. Bronson, Richard(1989).Matrix Operations.McGraw-Hill.
  2. Devroye, Luc(1986).Non-Uniform Random Variate Generation.New York:Springer-Verlag, Inc..
  3. Johnson, Norman L.(1976).Distributions in Statistics: Continuous Multivariate Distributions.John Wiley & Sons Inc..
  4. Marsaglla,Olkin(1984).Generating correlation matrices.SIAM Journal on Scientific and Statistical Computations,5,470-475.
  5. Press, Willian H.,Teukolsky, Saul A.,Vetterling, William T.,Flannery, Brian P.(1992).Numerical Recipes in C++.Cambridge University Press.