题名

Using SAS/GENMOD Procedure to Fit GEE Regression Models

并列篇名

應用SAS/GENMOD程序去擬合GEE迴歸模式

DOI

10.6338/JDA.200906_4(3).0007

作者

溫敏杰(Miin-Jye Wen);葉莉莉(Lily Yeh)

关键词

一般化估計方程式 ; 一般化線性模式 ; SAS/GENMOD程序 ; 居家護理 ; Generalized estimating equations ; Generalized linear model ; SAS/GENMOD procedure ; Home care

期刊名称

Journal of Data Analysis

卷期/出版年月

4卷3期(2009 / 06 / 01)

页次

119 - 130

内容语文

英文

中文摘要

研究者常有興趣對縱貫性研究資料之分析。近二十年,對於縱貫性資料之一般化線性模式之估計方程式吸引許多人注意。Liang和Zeger(1986)提出一般化估計方程式來解決這方面的問題。一般化估計方程式是延伸一般化線性模式至迴歸方程式之個體間是相關的情形。本文提供一個簡短的說明一般化線性模式與一般化估計方程式方法並舉一個居家護理之實例,利用SAS軟體中之GENMOD程序來說明一般化估計方程式方法在相關性資料分析上之處理。

英文摘要

Researchers are often interested in analyzing data that arise from longitudinal studies. And estimating equations for generalized linear modeling of longitudinal data have attracted a great deal of attention over the last two decades. Liang and Zeger (1986) presented an approach, generalized estimating equations (GEEs) which extended from generalized linear models (GLMs) to a regression setting with correlated observations within subjects, to these problems. This paper provides briefly review the GLM and GEE methodologies, and illustrate its implementation with a home-care example using the GENMOD procedure in SAS/STAT software to solve GEE in the analysis of correlated data.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. Yeh, L.,Wen, M. J.,Shu, B. C.,Peng, C. J.(2000).Albumin and hemoglobin status of home care clients within half-year service.The Journal of Nursing Research,8(4),477-458.
    連結:
  2. (1993).SAS Technical Report p-243 SAS/STAT Software: The GENMOD procedure, Release 6.09.Cary, NC. U.S.A:SAS Institute Inc.
  3. Groemping, U. (1993). Regression analysis using GEE. Version 2.03, Fachbereich statistik, Universitaet, Dortmund, Germany..
  4. (1996).Application of the SUDDAN Software Package: Evaluation of a Teratology Experiment with Clustered Binary Data.1996 Joint Statistical Meetings,Research Triangle Park, NC, U.S.A.:
  5. Cody, R. P.,Smith, J. K.(1997).Applied statistics and the SAS programming languages.New Jersey U.S.A.:Prentice Hall, Inc..
  6. Diggle, P. J.,Liang, K. Y.,Zeger, S. L.(1994).Analysis of longitudinal data.Oxford, U.K.:Clarendon press.
  7. Horton, N. J.,Lipsitz, S. R.(1999).Review of software to fit generalized estimating equation regression models.The American Statistician,53,160-169.
  8. Johnston, G.(1996).Repeated Measures Analysis with Discrete Data Using the SAS System.SUGI proceeding
  9. Karim, M. R.,Zeger, S. L.(1988).,Dept. of Biostatistics, The Johns Hopkins University.
  10. Liang, K. Y.,Zeger, S. L.(1986).Longitudinal data analysis using generalized linear models.Biometrika,73,13-22.
  11. McCullagh, P.,Nelder, J. A.(1989).Generalized Linear Models.London:Chapman & Hall.
  12. Nelder, J. A.,Wedderburn, R. W. M.(1972).Generalized Linear Models.Journal of the Royal Statistical Society A,135,370-384.
  13. Neter, J.,Kutner, M. H.,Nachtsheim, C. J.,Wasserman, W.(1989).Applied Linear Regression Models.Irwin, Inc..
  14. SAS Institute(1996).SAS/STAT Software: changes and enhancements in Release 6.12.Cary, NC:SAS Institute, Inc..
  15. Stokes, M.,Curtis, N.(2000).Statistical Enhancements in Release 6.12 of the SAS System.Cary, NC., U.S.A.:SAS Institute Inc..
  16. Zeger, S. L.,Liang, K. Y.(1986).The analysis of discrete and continuous longitudinal data.Biometrica,42,121-130.