题名 |
纵向数据中分层线性模型的变量筛选 |
并列篇名 |
Principles and Methods According to Which HLM Models Deal with Longitudinal Data |
DOI |
10.6338/JDA.201002_5(1).0005 |
作者 |
陈劲翔(Gin-Sheng Chen);易丹辉(Dan-Huei Yi) |
关键词 |
纵向数据 ; 分层线性模型 ; 变量筛选 ; Longitudinal Data ; Hierarchical Linear Model ; Variable Selection |
期刊名称 |
Journal of Data Analysis |
卷期/出版年月 |
5卷1期(2010 / 02 / 01) |
页次 |
99 - 117 |
内容语文 |
簡體中文 |
中文摘要 |
纵向数据一直都是生物医学统计探讨的热门话题,分层线性模型作为一种灵活的模型,在此领域得到了广泛的运用。然而,分层线性模型中层的结构虽然能够恰当地刻画纵向数据观测值嵌套于个体的特点,但同时也带来了一个问题──使模型中变量的数量大幅度增加,从而加大了分析和运算的难度。正因为此,分层线性模型要求建模者具有一定筛选变量的意识和能力。本文将基于分层线性模型处理纵向数据的原理和方法,讨论相关的变量筛选方法。 |
英文摘要 |
Longitudinal data has long been the popular topic in Biostatistics, and the Hierarchical Linear Model (HLM), as a flexible model, tends to be applied widely. Although the level structure of HLM helps describe the character of longitudinal data properly that observations are nested to individuals, a problem has been brought about at the same time and makes the model more difficult for analysis and calculation: the rapidly increasing number of variables in the model. Because of this, HLM model builders are required to possess the awareness and skills to filter proper variables. This paper will make a discussion on variable selection based on principles and methods according to which HLM models deal with longitudinal data. |
主题分类 |
基礎與應用科學 >
資訊科學 基礎與應用科學 > 統計 社會科學 > 管理學 |
参考文献 |
|