题名

應用資料包絡分析法建構銀行顧客行為評分模式

并列篇名

Behavioral Scoring Model for Bank Customers Using Data Envelopment Analysis

DOI

10.6338/JDA.201204_7(2).0006

作者

呂奇傑(Chi-Jie Lu);李天行(Tian-Shyug Lee);陳怡妃(I-Fei Chen);李忠達(Chung-Ta Lee)

关键词

行為評分 ; 資料包絡分析 ; 顧客貢獻度 ; 信用評等 ; Behavior scoring ; Data envelopment analysis ; customer's contribution ; credit scoring

期刊名称

Journal of Data Analysis

卷期/出版年月

7卷2期(2012 / 04 / 01)

页次

103 - 123

内容语文

繁體中文

中文摘要

行為評分模式(behaivoral scoring)可以讓企業評估既有顧客的信用風險與消費狀況,進而衡量顧客貢獻度,對金融業而言是一個相當重要的風險管理工具。然而現存之行為評分模式,其分析結果多半只將分析對象區分為好顧客與壞顧客,缺乏針對分析結果提供具體改善方向的能力。資料包絡分析法(data envelioment analysis, DEA)是一個無母數的多目標決策工具,用以衡量決策制定單位(decision making unit, DMU)的相對效率,其特點在於提供無效率之決策制定單位明確的效率改善方向,因此廣泛用於各項領域的績效評估議題上。本研究應用資料包絡分析法建構銀行顧客的行為評分模式,並利用某銀行所提供之信用卡資料進行實證。所提方法透過DEA將信用卡持卡人區分出貢獻度高與貢獻度低之兩種類型顧客,之後再針對低貢獻度的顧客,利用DEA的差額分析結果,提供銀行改善的方向,以將低貢獻的顧客轉化成高貢獻的顧客。實證結果顯示,所提方法能有效的將持卡人區分為高貢獻與低貢獻客戶,並且能提供銀行明確的方向,將低貢獻的顧客轉化成高貢獻的顧客,達成個人化行銷或客製化管理的目的。

英文摘要

Behavior scoring is an important part of risk management in financial institutions, which is used to help banks make better decisions in managing existing customers by forecasting their future credit risk and expenditure performance. The existing behavior scoring methods usually generate the results of ”good creditor” or ”bad creditor” from customers, however, they are lack of improving abilities for classification results. This study proposes a behavior scoring model based on data envelopment analysis (DEA) to manage existing credit card customers in a bank. DEA is a method of measuring the relative efficiencies of decision making units (DMUs). The most important advantage of DEA is providing an indeed improvement for decision making unit (DMU). The proposed method uses DEA model to classify the customers into high contribution customers and low contribution customers. Then, the low contribution customers will be examined by using the slack analysis of DEA model to promote their contributions. A real credit cardholder dataset in a Taiwan commercial bank is selected as the experimental data to demonstrate the performance of the proposed method. The experiment results showed that the proposed method can provide indeed directions for bank to improve the contribution of the low contribution customers, and facilitates marketing strategy development.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. Al-Tamimi, H. A. H.,Lootah, A. M.(2007).Evaluating the operational and profitability efficiency of a UAE-based commercial bank.Journal of Financial Services Marketing,11(4),333-348.
  2. Banasiak, M.,O''Hare, E.(2001).Behavior scoring.Business Credit,103(3),52-55.
  3. Chang, T. C.,Chiu, Y. H.(2006).Affecting factors on risk-adjusted efficiency in Taiwan's banking industry.Contemporary Economic Policy,24(4),634-648.
  4. Chen, M. C.,Huang, S. H.(2003).Credit scoring and rejected instances reassigning through evolutionary computation techniques.Expert Systems with Applications,24(4),433-441.
  5. Cherchye, L.,Post, T.(2003).Methodological advances in DEA: A survey and an application for the Dutch electricity sector.Statistica Neerlandica,57(4),410-438.
  6. Cielen, A.,Peters, L.,Vanhoof, K.(2004).Bankruptcy prediction using a data envelopment analysis.European Journal of Operational Research,154(2),526-532.
  7. Coarnes, A.,Cooper, W. W.,Rhodes, E.(1978).Measuring the efficiency of decision making unites.European Journal of Operational Research,2,429-444.
  8. Connor, M.,Bona, S.(2003).Scoring the customer lifecycle.Business Credit,105(2),32-33.
  9. Cooper, W. W.,Seiford, L. M.,Zhu, J.(2004).Handbook on Data Envelopment Analysis.Boston, MA:Kluwer Academic.
  10. Crook, J. N.,Edelman, D. B.,Thomas, L. C.(2007).Recent developments in consumer credit risk assessment.European Journal of Operational Research,183(3),1447-1465.
  11. Emel, A. B.,Oral, M.,Reisman, A.,Yolalan, R.(2003).A credit scoring approach for the commercial banking sector.Socio-Economic Planning Sciences,37(2),103-123.
  12. Emrouznejad, A.,Parker, B. R.,Tavares, G.(2007).Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA.Socio-Economic Planning Sciences,42(3),151-157.
  13. Frias-Martinez, E.,Magoulas, G.,Chen, S.,Macredie, R.(2005).Modeling human behavior in user-adaptive systems: Recent advances using soft computing techniques.Expert Systems with Applications,29(2),320-329.
  14. Fritz, S.,Hosemann, D.(2000).Restructuring the credit process: behaviour scoring for german corporates.Intelligent Systems in Accounting, Finance & Management,9(1),9-21.
  15. Gregoriou, G.,Messier, J.,Sedzro, K.(2004).Assessing the relative efficiency of credit union branches using data envelopment analysis.INFOR,42(4),281-297.
  16. Hadden, J.,Tiwari, A.,Roy, R.,Ruta, D.(2007).Computer assisted customer churn management: State-of-the-art and future trends.Computers and Operations Research,34(10),2902-2917.
  17. Haslem, J. A.,Scheraga, C. A.,Bedingfield, J. P.(1999).DEA efficiency profiles of U.S. banks operating internationally.International Review of Economics and Finance,8(2),165-182.
  18. He, J.,Liu, X.,Shi, Y.,Xu, W.,Yan, N.(2004).Classifications of credit cardholder behavior by using fuzzy linear programming.International Journal of Information Technology and Decision Making,3(4),633-6508.
  19. Hsieh, N. C.(2005).Hybrid mining approach in the design of credit scoring models.Expert Systems with Applications,28(4),655-665.
  20. Hsieh, N. C.(2004).An integrated data mining and behavioral scoring model for analyzing bank customers.Expert Systems with Applications,27(4),623-633.
  21. Kou, G.,Peng, Y.,Shi, Y.,Wise, M.,Xu, W.(2005).Discovering credit cardholders' behavior by multiple criteria linear programming.Annals of Operations Research,135(1),261-274.
  22. Larivière, B.,Van den Poel, D.(2005).Predicting customer retention and profitability by using random forests and regression forests techniques.Expert Systems with Applications,29(2),472-484.
  23. Li, S. T.,Shiue, W.,Huang, M. H.(2006).The evaluation of customer loans using support vector machines.Expert Systems with Applications,30(4),772-782.
  24. Lim, M. K.,Sohn, S. Y.(2007).Cluster-based dynamic scoring model.Expert Systems with Applications,32(2),427-431.
  25. Lin, Y.(2002).Improvement on behavior scores by dual-model scoring system.International Journal of Information Technology and Decision,1(1),153-164.
  26. Malhotr, R.,Malhotr, D. K.(2003).Evaluating consumer loans using neural networks.Organization and Management,31,83-96.
  27. Piramuthu, S.(1999).Financial credit-risk evaluation with neural and neurofuzzy systems.European Journal of Operational Research,112,310-321.
  28. Seiford, L. M.(1996).Data envelopment analysis: The evolution of the state of the art (1978-1995).Journal of Productivity Analysis,7,99-137.
  29. Seiford, L. M.,Thrall, R. M.(1990).Recent developments in DEA: The mathematical programming approach to frontier analysis.Journal of Econometrics,46,7-38.
  30. Thomas, L. C.,Ho, J.,Scherer, W. T.(2001).Time will tell: behavioural scoring and the dynamics of consumer credit assessment.IMA Journal of Management Mathematics,12(1),89-103.
  31. Wang, W. K.,Huang, H. C.,Lai, M. C.(2005).Measuring the relative efficiency of commercial banks: a comparative study on different ownership modes in China.Journal of American Academy of Business,7(2),219-223.
  32. West, D.(2000).Neural network credit scoring models.Computers and Operations Research,27,1131-1152.
  33. 何泰君(2007)。碩士論文(碩士論文)。朝陽科技大學保險金融管理系碩士班。
  34. 張振志(2007)。碩士論文(碩士論文)。天主教輔仁大學管理學研究所。
  35. 曹曾樹(2008)。中小企業財務危機預警實證研究之文獻回顧。中小企業發展季刊,9,135-167。
  36. 陳宜欣(2008)。碩士論文(碩士論文)。國立中正大學。
  37. 陳麗君(2002)。碩士論文(碩士論文)。元智大學工業工程與管理研究所。
  38. 彭慧雯(2000)。碩士論文(碩士論文)。台北科技大學生產工程與管理研究所。
  39. 曾月金(2002)。碩士論文(碩士論文)。銘傳大學資訊管理研究所。
  40. 詹書銘(2005)。碩士論文(碩士論文)。朝陽科技大學財務金融系碩士班。
  41. 劉書汎(2009)。碩士論文(碩士論文)。朝陽科技大學財務金融系碩士班。
  42. 盧俊傑(2006)。碩士論文(碩士論文)。大同大學資訊工程學系暨研究所。
  43. 蘇泓憲(2008)。碩士論文(碩士論文)。銘傳大學。