英文摘要
|
As the increase of the economy, wages and consumer price, the pressure of Inflation causes production and marketing cost to increase. In addition, after joined the WTO, Taiwan faced the trend of trade liberalization, and had to compete against the whole world, this situation lead Taiwan to be confronted with a significant challenges. Therefore, to get correct and useful information, and grasp the changes of market supply and demand are able to react the changes in market.This study took cabbage for example, under the situation that full of uncertainty in the process of agricultural produce, regarded import and export trade, origin price, trading volume, and climate information as influence variables, and used data mining techniques to establish CRISP-DM process included regression analysis, time series, neural network, SVR and Random Forests and MARS prediction methods to find out the best agricultural forecasting model of crop price and yield. The results showed that MARS is the best model in Yield and SVR is the best model in price. This study expect the results can assist the related governmental units to obtain detailed price and yield early warning system quickly, and make countermeasure in advance, to improve the ability of agricultural information and production stability.
|
参考文献
|
-
Hsu, C. W., C. C. Lin, & C. J. Lin (2003). A practical guide to support classification, Available from: http://www.csie.ntu.edu.tw/~cjlin/papers/guide.pdf
-
Bergerson, K.,Wunsch, D. C.(1991).A Commodity Trading Model Based on a Neural Network-expert System Hybrid.IJCNN-91
-
Berry, M. J. A.,Linoff, G.(1997).Data Mining Techniques: For Marketing Sale and Customer Support.Wiley Computer.
-
Box, G.,Jenkins, G.(1970).Time Series Analysis: Forecasting and Control.San Francisco:Holden-Day.
-
Breiman, L.(2001).Random forest.Machine Learning,45(1),5-32.
-
Cabena, P.,Hadjinian, P. O.,Stadler, R.,Verhees, J.,Zanasi, A.(1997).Discovering Data Mining from Concept to Implementation.New Jersey:Prentice Hall.
-
Cherkassky, V.,Ma, Y.(2004).Practical selection of SVM parameters and noise estimation for SVM regression.Neural Network,17,113-126.
-
Chiang, W. C.,Urban, T. L.,Baldridge, G. W.(1995).A Neural Network Approach to Mutual Fund Net Aasset Value Forecasting.Omega, Int. J. Mgmt. Sci.,24(2),205-210.
-
Choi, D. H.,Ahn, B. S.,Kim, S. H.(2005).Prioritization of association rules in data mining: Multiple criteria decision approach.Expert Systems With Applications,29(4),867-878.
-
Fayyad, M. U.(1996).Data Mining and knowledge Discovery: Making Sense Out of Data.IEEE Expet,11(5),20-25.
-
Gooijer, Jan G.,Ray, Bonnie K.,Krager, H.(1998).Forecasting Exchange Rates Using TSTIME.Journal of International Money and Finance,17(3),513-534.
-
Griffin, W. L.,Fisher, N. I.,Friedman, J. H.,Ryan, C. G.(1997).Statistical Techniques for the Classification of Chromites in Diamond Exploration Samples.Journal of Geochemical Exploration,59,223-249.
-
Gunn, S. R.(1998).,Dept of Electronics and Computer Science, University of Southampton.
-
Ho, T. K.(1998).The random subspace method for constructing decision forests.IEEE Transactions on Pattern Analysis and Machine Intelligence,20(8),832-844.
-
Huang, C. L.,Tsai, C. Y.(2009).Ahybrid SOFM-SVR with a filter-based feature selection for stock market forecasting.Expert Systems With Applications,36(2),1529-1539.
-
Kumar, U. A.(2005).Comparison of neural networks and regression analysis: a new insight.Computers Operations Research,21(3),249-263.
-
Lapedes, A.,Farber, R.(1987).,Los Alamos National Laboratory.
-
Lewis, P. A. W.,Steveans, J. G.(1991).Nonlinear Modeling of Time Series Using Multivariate Adaptive Regression Splines(MARS).The Journal of the American Statistical Association,86,864-877.
-
Liong, S. Y.,Sivapragasam, C.(2002).Flood State Forecasting with Support Vector Machines.Journal of the American Water Resources Association,38(1),173-186.
-
Tay, F. E. H.,Cao, L.(2001).Application of support vector machines in financial time series forecasting.Omega,29,309-317.
-
Vapnik, V. N.(1995).The Nature of the Statistical Learning Theory.New York:Springer.
-
Vapnik, V. N.,Golowich, S.,Smola, A.(1997).Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing.Neural Information Processing Systems,Cambridge, MA:
-
Wiener, N.(1958).Nonlinear Problems in Random Theory.Cambridge, Mass:M.I.T. Press.
-
Zhang, G.,Patuwo, B. E.,Hu, M. Y.(1998).Forecasting with artificial neural networks: The state of art.International Journal of Forecasting,14(1),35-62.
-
王策玄(2002)。碩士論文(碩士論文)。國立中興大學行銷學系。
-
王瑞芳(2009)。碩士論文(碩士論文)。臺灣大學流行病學研究所。
-
王裕民(2010)。碩士論文(碩士論文)。屏東科技大學土木工程系所。
-
朱芫慧(2008)。碩士論文(碩士論文)。輔仁大學應用統計學研究所。
-
何宜鍵(1997)。碩士論文(碩士論文)。國立中正大學企業管理學系。
-
李惠妍(2003)。碩士論文(碩士論文)。國立成功大學企業管理學系(EMBA)專班。
-
李曉隆(2002)。碩士論文(碩士論文)。國立台灣科技大學企業管理學系。
-
林佩蓉(2002)。碩士論文(碩士論文)。國立中興大學行銷學系。
-
林宸翊(2009)。碩士論文(碩士論文)。輔仁大學應用統計所。
-
林德祥(2010)。碩士論文(碩士論文)。國立交通大學工業工程與管理學系。
-
邱思涵(2010)。碩士論文(碩士論文)。中國文化大學經濟學系。
-
唐淑娟(2001)。碩士論文(碩士論文)。屏東科技大學農企業管理研究所。
-
徐培哲(2007)。碩士論文(碩士論文)。逢甲大學土木工程所。
-
張聖宏(2011)。碩士論文(碩士論文)。國立交通大學管理學院資訊管理學程。
-
梁育靜(2009)。碩士論文(碩士論文)。東吳大學經濟學系。
-
許弘毅(2010)。碩士論文(碩士論文)。高雄醫學大學醫務管理學研究所碩士在職專班。
-
連偉志(2010)。碩士論文(碩士論文)。國立交通大學管理學院碩士在職專班財務金融組。
-
郭佩香(2009)。碩士論文(碩士論文)。輔仁大學應用統計學研究所。
-
郭亭君(2010)。碩士論文(碩士論文)。淡江大學管理科學研究所碩士班。
-
陳寬裕(2006)。結合遺傳演算法與支援向量回歸於台灣股票加權指數之預測。計量管理期刊,3(1),1-18。
-
陳靜怡(2003)。碩士論文(碩士論文)。輔仁大學管理學研究所碩士班。
-
彭克仲、陳貞伶、謝麗芳、嚴明(1998)。應用類神經網路於甘藍菜價格預測之分析。臺灣經濟,263,35-50。
-
曾麗華(1995)。碩士論文(碩士論文)。成功大學統計研究所。
-
戢桂如、蔡瓊娥、周世玉(1997)。甘藍菜價格預警系統之建立─ARiMA模式為預測基礎。臺灣經濟,246,17-26。
-
葉敬軒(2001)。碩士論文(碩士論文)。中興大學農產運銷研究所。
-
鄭永福(2000)。碩士論文(碩士論文)。成功大學統計所。
-
蘇志倫(1999)。碩士論文(碩士論文)。中興大學農產運銷研究所。
|