题名

流程探勘:建構流程模型新方法

并列篇名

Process Mining: Process Model from Event Logs

DOI

10.6338/JDA.201304_8(2).0001

作者

林共進(Dennis K. J. Lin);陳雲岫(Yun-Shiow Chen);郭珉旬(Min-Hsun Kuo)

关键词

派翠網路 ; 流程模型 ; 流程資料 ; α-algorithm ; Petri nets ; Process model ; Stream-data

期刊名称

Journal of Data Analysis

卷期/出版年月

8卷2期(2013 / 04 / 01)

页次

1 - 29

内容语文

英文

中文摘要

在現今充滿競爭的產業結構下,建構一工作流程是相當複雜且費時的工作,卻也是業界所必須面對的問題,尤其是涉及軟體工程與流程管理領域。而流程探勘的技術也在這環境中日益受重視。該技術主要是從工作流程所產生之記錄資料中分析、建構流程模型,以此提供使用者了解真正運作中的流程狀態。在這研究中,我們提出一個新的建構法,藉由改善α-algorithm使其能處理較為複雜但卻是生活中常見的流程模型,如活動之間的關係涉及多擇多的狀況,並以簡單例子說明演算法之步驟,同時也將該演算法運用於依實際案例中,結果也證明我們所提出之演算法能較α-algorithm或其相關演算法萃取出更貼近事實的流程。

英文摘要

Modeling a workflow design is a complicated and time-consuming process in today's competitive market. It has received a great deal of attention in many fields, such as software engineering and workflow management. Process mining is such a technique to analyze the stream-data from the workflow process. Modern information technologies allow us to collect complete global stream-data in an efficient manner. Process mining helps in understanding the actual process from these stream-data. In this paper, we develop an algorithm for process mining by modifying the α-algorithm to handle complex activity relationships involving concurrence and alternative. The detailed procedure of the proposed algorithm is discussed, with an example for a thorough illustration. A real-life case study is provided, and comparison with existing algorithms is also made. It is shown that our proposed method can handle more complicated situations than the existing methods.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. De Medeiros AKA, Van Dongen BF, Van der Aalst WMP, Weijters AJMM. Process mining: Extending the α-algorithm to mine short loops. http://fp.tm.tue.nl/beta/publications/working%20papers/Beta_WP113.pdf [1 August 2007]
  2. Van der Aalst WMP, Weijters AJMM, Maruster L. Workflow Mining: Discovering Process Models from Event Logs. http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2004/BPM-04-06.pdf [1 August 2007]
  3. Wen L, Van der Aalst WMP, Wang J, Sum J. Mining process models with Non-free-choice constructs. http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-23.pdf [1 August 2007].
  4. Herbst J, Karagiannis D. Integrating Machine Learning and Workflow Management to Support Acquisition and Adaptation of Workflow Models. http://citeseer.ist.psu.edu/cache/papers/cs/25888/http:zSzzSzhome.t-online.dezSzhomezSzjoachim.herbstzSzijisafm00.pdf/herbst98integrating.pdf. [1 August 2007]
  5. Agrawal, R.,Gunopulos, D.,Leymann, F.(1998).Mining process models from workflow logs.Lecture Notes in Computer Science,1337,469.
  6. Cook, JE.,Wolf, AL(1998).Discovering models of software processes from event-based data.ACM Transactions on Software Engineering and Methodology,7,215-249.
  7. Cook, JE,Wolf, AL(1995).Automating process discovery through event-data analysis.ACM ICSE '95
  8. Cook, JE,Wolf, AL.(1998).Event-based detection of concurrency.ACM SIGSOFT Software Engineering Notes,23(6),35-45.
  9. Cook, JE,Wolf, AL.(1998).Event-based detection of concurrency.Proceedings of the 6th ACM SIGSOFT international symposium on Foundations of software engineering SIGSOFT '98/FSE-6
  10. de Medeiros, AK Alves,Weijters, AJMM,Van der Aalst, WMP(2006).Genetic process mining: a basic approach and its challenges.BPM 2005 Workshops. LNCS 3812
  11. De Medeiros, AKA,Van der Aalst, WMP,Weijters, AJMM.(2003).Workflow mining: Current status and future directions.CoopIS/DOA/ODBASE 2003. LNCS 2888
  12. Herbst, J.,Karagiannis, D(2004).Workflow mining with InWoLvW.Computers in Industry,53,245-264.
  13. Huang, XQ.,Wang, LF.,Zhao, W.,Zhang, SK.,Yuan, CY(2006).A workflow process mining algorithm based on synchro-net.J. Comput. Sci. & Technol,21,66-71.
  14. Humphrey, WS,Kellner, MI(1989).,ACM.
  15. Maruster, Laura,Weijters, AJMM,Van der Aalst, WMP,Van den Bosch, A.(2002).Process mining: Discovering direct successors in process logs.DS 2003. LNCS 2534
  16. Schimm, G(2004).Mining exact models of concurrent workflows.Computers in Industry,53,265-281.
  17. Schimm, G.(2003).Mining Most Specific Workflow Models from Event-Based Data.BPM 2003. LNCS 2678
  18. Van der Aalst, WMP.(2006).Matching observed behavior and modeled behavior: An approach based on Petri nets and integer programming.Decision Support System,42,1843-1859.
  19. Van der Aalst, WMP,de Medeiros, AK Alves(2005).Process mining and security: Detecting anomalous process executions and checking process conformance.Electronic Notes in Theoretical Computer Science,121,3-21.
  20. Van der Aalst, WMP,de Medeiros, AK Alves,Weijters, AJMM.(2005).Genetic process mining.Applications and Theory of Petri Nets 2005. LNCS 3536
  21. Van der Aalst, WMP,Reijers, HA,Weijters, AJMM,Van Dongen, BF,de Medeiros, AK Alves,Song, M,Verbeek, HMW.(2007).Business process mining: An industrial application.Information Systems,32,714-732.
  22. Van der Aalst, WMP,Van Dongen, BF,Herbst, J,Maruster, L,Schimm, G,Weijters, AJMM.(2003).Workflow mining: A survey of issues and approaches.Data & Knowledge Engineering,47,237-267.
  23. Van der Aalst, WMP,Weijters, A JMM.(2004).Process mining: a research agenda.Computers in Industry,53,231-244.
  24. Van Dongen, BF,Mendling, J,Van der Aalst, WMP.(2006).Structural patterns for soundness of business process models.Proceedings of the 10th IEEE International Enterprise Distributed Object Computing Conference (EDOC'06)
  25. Wainer, J,Kim, K,Ellis, CA.(2005).A workflow mining method through model rewriting.CRIWG 2005. LNCS 3706
被引用次数
  1. 魏裕中,陳翠玲,陳雲蘭,李美賢(2019)。迴歸模型偵測歧異點之統計方法於氣溫資料校驗的探討。中國統計學報,57(4),286-307。