题名

在國際財務報導準則IFRSs下以Crisp-DM流程建立財務風險管理平台

并列篇名

Under the International Financial Reporting Standards (IFRSs), Using Crisp-DM Procedure to Build up a Financial Risk Management System.

DOI

10.6338/JDA.201306_8(3).0006

作者

陳維毅(Wei-Yi Chen);邱俊誠(Chun-Cheng Chiu)

关键词

國際財務報導準則 ; 資料採礦 ; 雲端運算 ; 財務風險 ; 羅吉斯迴歸 ; 類神經網路 ; 支援向量機 ; 決策樹 ; 隨機森林 ; IFRSs ; Data Mining ; Cloud Computing ; Financial Risk ; Logistic Regression ; Neural Network ; Support Vector Machine ; Decision Tree ; Random Forests

期刊名称

Journal of Data Analysis

卷期/出版年月

8卷3期(2013 / 06 / 01)

页次

119 - 137

内容语文

繁體中文

中文摘要

國際財務報導準則(International Financial Reporting Standards,簡稱IFRSs)已是會計資訊邁入全球化之重要橋樑及共通語言,其中IFRS7「金融工具:揭露」將所有金融工具之揭露彙整成同一號準則,使報表使用者可獲得一致的風險揭露資訊,提高財務報表之透明度及可比較性,對於報表使用者利用財務報表評估企業財務績效及相關風險影響甚鉅;另外,基於Basel II之下的風險模型亦趨成熟,希冀能導入在Basel II下建立風險模型之經驗,經Crisp-DM流程建立模型,建構在IFRSs下企業財務風險管理之標準流程。本研究嘗試以資料採礦方法與雲端技術建構企業財務風險模型,使用R程式將流程建構於雲端平台,提高建立模型的便捷性及效率。本研究以上市櫃公司之財務報表及公司治理資料,模型建構時採用羅吉斯迴歸、類神經網路、決策樹、隨機森林及支援向量機上述統計方法,藉由比較多種統計方法預測出之模型正確率與反查率,最終選定羅吉斯迴歸模型為最終模型,並作評估及驗證,發現預測能力穩定,整體正確率及反查率皆達八成以上,確實能在實際業務中加以應用。

英文摘要

IFRSs is an important bridge and a common language which let accounting information step into globalization, among which ”IFRS 7 Financial Instruments: Disclosures”, which compiled the disclosure of all financial instruments into the same criteria. Let users of financial statements get consistent risk disclosure information to enhance the transparency and availability of financial statements and impact enormously for users of financial statements use financial statements to evaluate corporate financial performance and associated risk. In addition, based on the risk model under the Basel II becomes maturing, hoping to be able to import the experience of setting up a risk model under Basel II. Through Crisp-DM process to build up models, and construct the standard process of corporate financial risk management under IFRSs. This study tries to construct a corporate financial risk models by use data mining methods and cloud technology. Use the R program to construct the process in the cloud platform to improve the convenience and efficiency of build up models. In this study, use the financial statements and corporate governance data of listed companies, using logistic regression modeling, neural networks, decision trees, random forests and support vector machine. By compare those statistical methods accuracy and recall. Finally, select logistic regression model. By models assessment and verification, found that the stability of the predictive ability. Accuracy and recall are more than 80%, shows can indeed be applied in actual business.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. 謝尚文(2008)。台北市,國立政治大學商學院統計學系碩士班。
    連結:
  2. 謝欣芸(2009)。台北市,國立政治大學商學院統計學系碩士班。
    連結:
  3. Cloud-R。http://epigenomics.ncu.edu.tw/Cloud-R/index_tw.php
  4. CubicPower。http://www.cubicpower.idv.tw
  5. R語言官方網站。http://www.r-project.org
  6. 林宗勳(2006)。Support Vector Machines簡介。未出版。
  7. 行政院金融監督管理委員會。http://www.fsc.gov.tw
  8. MCU Smart Score 。http://120.125.85.122/Public/Home.aspx
  9. 金融監督管理委員會(2004)新巴塞爾資本協定中文版
  10. Genesis Computers。http://gcom.net/cloud-computing.html
  11. Altman, E. I.(1968).Financial ratios, discriminate analysis and the prediction of corporate bankruptcy.Journal of Finance,23(4),589-609.
  12. Altman, E. I.,Haldeman, R. G.,Narayanan, P.(1977).Zeta Analysis : A New Model to Identify Bankruptcy Risk of Corporations.Journal of Banking and Finance,1,29-54.
  13. Aziz, A.,Lawson, G. H.(1989).Cash Flow Reporting and Financial Distress Models : Testing of Hypotheses.Financial Management,18(1),55-63.
  14. Beaver, W. H.(1966).Financial Ratios as Predictors of Failure.Journal of Accounting Research,4,71-111.
  15. Berry M. J.,Linoff, G.(1997).Data Mining Techniques: For Marketing Sale and Customer Support.Wiley Computer.
  16. Blum, M.(1974).Failing Company Discriminant Analysis.Journal of Accounting Research,12,1-25.
  17. Boss, G.,Padma, M.,Dennis, Q.,Linda, L.,Harold, H.(2007).Cloud Computing IBM Whitepaper.
  18. Breiman, L.(2001).Random Forests.Machine Learning,45(1),5-32.
  19. Casey, C.,Bartczak, N.(1985).Using Operating Cash Flow Data to Predict Financial Distress: Some Extensions.Journal of Accounting Research,23(1),384-401.
  20. Coats, P. K.,Fant, L. F.(1993).Recognizing financial distress patterns using a neural network tool.Financial Management,2,142-155.
  21. Deakin, E. B.(1972).A Discriminant Analysis of Predictors of Business Failure.Journal of Accounting Research,10(1),167-179.
  22. Figini, S.,Fantazzini, D.(2009).Random Survival Forests Models for SME Credit Risk Measurement.Methodology and Computing in Applied Probability,11,29-45.
  23. Francis, J. R.,Krishnan, J.(2002).Evidence on Auditor Risk-Management Strategies Before and After the Private Securities Litigation Reform Act of 1995.Asia Pacific Journal of Accounting and Economics,9(2),135-157.
  24. Freeman, J. A.,Skapura, D. M.(1992).Neural networks algorithms, applications, and programming techniques.MA:Addison-Wesley Publishing Company.
  25. Geiger, M. A.,Raghunandan, K.,Rama, D. V.(2005).Recent Changes in the Association between Bankruptcies and Prior Audit Opinions.A Journal of Practice & Theory,24(1),21-35.
  26. Hand, D.,Mannila, H.,Smyth, P.(2001).Principles of Data Mining.Cambridge, MA:MIT Press.
  27. Hanley, J. A.,McNeil, B. J.(1982).The Meaning and Use of the Area under a Receiver Operating (ROC) Curvel Characteristic.Radiology,143(1),29-36.
  28. Hopwood, W.,McKeown, J.,Mutchler, J.(1989).A test of the incremental explanatory power of opinions qualified for consistency and uncertainty.The Accounting Review,64,28-48.
  29. Hosmer, D. W.,Lemeshow, S.(2000).Applied Logistic Regression.John Wiley & Sons, Inc.
  30. Jarrow, R.,Lando, D.,Turnbull, S.(1997).A Markov model for the term structure of credit spread.Review of Financial Studies,10,481-523.
  31. Koh, H. C.,Tan, S. S.(1999).A neural network approach to the prediction of going concern status.Accounting and Business Research,29(3),211-216.
  32. Lau, H. L.(1987).A Five-State Financial Distress Predication Model.Journal of Accounting Research,25,127-138.
  33. Martin, D.(1977).Early warning of bank failure: A logit regression approach.Journal of Banking and Finance,1(3),249-276.
  34. Mays, E.(2001).Handbook of Credit Scoring.Chicago:Glenlake.
  35. Merton, R.(1974).On the pricing of corporate debt: The risk structure of interest rates.Journal of Finance,29,449-470.
  36. Odom, M. D.,Sharda, R.(1990).A neural network model for bankruptcy prediction.Proceeding of the IEEE International Conference on Neural Networks,12,163-168.
  37. Ohlson, J. S.(1980).Financial ratios and the probabilistic prediction of bankruptcy.Journal of Accounting Research,19,109-131.
  38. Ong, C. S.,Huang, J. J.,Tzeng, G. H.(2005).Building credit scoring models using genetic programming.Expert Systems with Applications,29(1),41-47.
  39. Rumelhart, D. E.,Hinton, G. E.,Williams, R. J.(1986).Learning representations by back-propagating errors.Nature,323,533-536.
  40. Smola, A. J.(1998).Birlinghoven, Germany,GMD.
  41. Sobehart, J. R.,Keenan, S. C.(2001).Measuring Default Accurately.Risk Magazine,3,31-33.
  42. Sultan, N.(2010).Cloud computing for education: A new dawn.International Journal of Information Management,30(2),109-116.
  43. Tam, K. T.,Kiang, M. Y.(1992).Managerial applications of neural networks: The case of bank failure predictions.Management Science,38,926-947.
  44. Vapnik, V. N.(1995).The nature of statistical learning theory.New York:Springer-Verlag.
  45. Yasushi, U.,Hiroyuki, M.(2008).Credit Risk Evaluation of Power Market Players with Random Forests.Transactions on Power and Energy,128,165-172.
  46. Zeitun, R.,Tian, G.,Keen, S.(2007).Default Probability for the Jordanian Companies: A Test of Cash Flow Theory.International Research Journal of Finance and Economics,8,147-162.
  47. 方匡南、吳見彬、朱建平、謝邦昌(2011)。隨機森林方法研究綜述。Statistics & Information Forum,26(3)
  48. 方順逸(2011)。IFRS 7號-金融工具:揭露公報影響試析。IFRS專刊,80-89。
  49. 林真真(2007)。統計分析與應用手冊-使用R軟體。台北市:文魁圖書。
  50. 陳怡妃(2008)。博士論文(博士論文)。新北市,天主教輔仁大學商學研究所。
  51. 陳瀅(2010)。雲端策略。台北市:天下雜誌股份有限公司。
  52. 雲端運算使用案例討論小組(2010)。雲端運算案例白皮書(4版)
  53. 詹益宗(2006)。碩士論文(碩士論文)。新竹市,國立交通大學財務金融研究所。
  54. 謝邦昌、蘇志雄、鄭宇庭(2011)。SQL Server 2008 R2資料採礦與商業智慧。台北市:碁峰資訊股份有限公司。
  55. 謝邦昌、蘇志雄、鄭宇庭、葉卲緯(2005)。資料採礦與商業智慧─SQL Server 2005。台北市:鼎茂圖書出版股份有限公司。
被引用次数
  1. 潘仁忠(2015)。資料採礦應用於中小企業信用保證授信風險預測~以T 銀行為例。Journal Of Data Analysis,10(3),51-74。