题名

以實際交易資料探討露天拍賣線上消費者平台再購行為之相關因素

并列篇名

Consumer Repurchase Behavior and Its Factors: A Research on the Trading Data of Ruten Taiwan Auction Website

DOI

10.6338/JDA.201410_9(5).0003

作者

何靖遠(C. Y. Ho);陳慧玲(H. L. Chen);林暐勝(W. S. Lin);陳志鴻(Z. H. Chen);刑哲源(C. Y. Hsing);林旭敏(H. M. Lin)

关键词

平台再購行為 ; RFM模型 ; 集群分析 ; E-marketplace Repurchase Behavior ; RFM Model ; Cluster Analysis

期刊名称

Journal of Data Analysis

卷期/出版年月

9卷5期(2014 / 10 / 01)

页次

47 - 71

内容语文

繁體中文

中文摘要

科技的進度與網路的普及,在網路付費的行為中,以網路購物65.75%佔最多數。但是因 為網路購物平台之進入門檻低,故網路購物平台如雨後春筍般的建置。在眾多的網路購物平台中,消費者之轉換成本比傳統購物方式低廉許多,如何使消費者能在自己的平台上消費,實為平台業者重要的課題。而依據學者的研究,開發一個新顧客比留住一個舊顧客,要花上5倍的成本,因此如何使顧客再次消費亦是網路購物平台和賣家能否獲利之關鍵所在。本研究藉由耙取露天拍賣網路購物平台女裝商品所揭露之實際交易資料,獲取有效資料18,343筆交易資料,共計為7,801個買家。我們以SPSS及STATISTICA統計軟體進行分析,以了解買家過往交易的RFM變數和網頁所揭露商品銷售相關的變數,和買家在露天平台的再購行為之間的關係。研究發現七個自變數都與依變數有顯著相關;其中平台交易間隔天數及平台再購總金額與消費者平台再購是負向相關的,平台再購次數及平台再購平均金額與消費者平台再購是正向相關。平台累積評價、已上架時間及已購買次數與消費者平台再購是負向相關,問與答筆數則是與消費者平台再購正向相關。經由分群分析得知潛在之有價值顧客僅佔0.88%,然其每次消費平均金額比其他消費者要多出近3倍,平台再購之頻率也將近達3倍。過去研究指出線上忠誠度之消費者,只要再購率提高5%,公司獲利可以提高25%至95%,因此露天拍賣平台應專注在這0.88%之客群上,以提高購物平台之獲利。由於以實際交易資料分析線上消費者平台再購行為的研究非常少數,因此本研究發現有實務上的參考價值,也能避免問卷調查可能會有self-report之偏誤。同時本研究亦進行了消費者在露天拍賣平台與Yahoo!奇摩拍賣平台的消費行為之比較,提供購物平台及線上賣家平台選擇及行銷的建議。

英文摘要

With the popularity of the Internet and advancement of technology, online shopping accounts the biggest proportion of 65.75% in payments via Internet. Due to its low entry requirement, online shopping platforms grow dramatically and rapidly. Consumer's relatively low switching cost from traditional shopping methods has made the issue of appealing for more consumers critical to shopping platform companies. Based upon previous literary reviews, the cost of developing a new customer is 5 times more expensive than that of retaining an old one. Therefore, the profit of the online shopping platforms and the sellers relies upon customer's repurchase behavior. This research digs up the trading data of women's clothing from Ruten Taiwan Auction Website and acquires 18,343 effective data, totaling 7,801 buyers. SPSS and STATISTICA are used for analysis to reveal the relationship among RFM variables in buyer's past trades, the selling-related variables disclosed by the webpage and buyer's repurchase behavior in Ruten Taiwan Auction Website. The research of Ruten Taiwan Auction Website finds that the 7 independent variables and the dependent variables are obviously correlated. A negative correlation is found among Days between 2 Trades, Total Amount of Repurchase and Customer Repurchase. A positive correlation is detected among Times of Repurchase, Average Amount of Repurchase and Customer Repurchase. Another negative correlation is discovered among Customer Reviews, Date First Available, Total Number of Purchase Made and Customer Repurchase. But Numbers of Customer Questions & Answers and Customer Repurchase are positively correlated. Through cluster analysis, potential valued customer is merely 0.88%; however, their average amount of purchase is about 3 times higher than that of other customers, and their frequency of repurchase is also 3 times higher than that in others as well. The studies in the past show that when the repurchase rate of loyal consumers increases 5%, the profit of the company can be boosted 25% to 95%. As a result, Ruten Taiwan Auction Website shall focus on these 0.88% customers to gain greater earnings. Owing that the studies of online platform customer repurchase behavior via actual trading data analysis are still scarce, what this research discovers is with reference value in practice and is also avoiding possible self-report bios by questionnaire. In addition, the comparison of the consumer behaviors on Ruten Taiwan Auction Website and that on Yahoo Taiwan Auction Website is also made in this research, providing with suggestions for marketing strategies of shopping platforms and for online seller's decision-making in choosing trading platforms.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. 財團法人台灣網路資訊中心(TWNIC)(民102 年12 月31 日),2013 年台灣無線網路使用調查報告出爐行動網路使用者大幅度快速成長手機首次超越筆記型電腦成為最主要的無線連網設備, 取自http://www.twnic.net.tw/download/200307/200307index.shtml
  2. 創市際市場研究顧問(民101 年3 月31 日)。創市際2012 年3 月份月刊報告書。取自http://news.ixresearch.com/?p=5375
  3. 資策會(FIND)(民99 年10 月18 日)。ICT 產業研究-2010 台灣線上購物市場規模3,583 億元。取自http://www.iii.org.tw/service/3_1_4.aspx?id=127
  4. Bauer, C.L.(1988).A direct mail customer purchase model.Journal of Direct Marketing,2(3),16-24.
  5. Brynjolfsson, E.,Smith, M. D.(2000).Frictionless commerce? A comparison of internet and conventional retailers.Management Science,46(4),563-585.
  6. Chiu, C.Y.,Lin, Z. P.,Chen, P. C.,Kuo, I. T.(2009).Applying RFM model to evaluate the e-loyalty for information-based website.International Journal of Electronic Business Management,7(4),278-285.
  7. Cullinan, G.J.(1978).Picking them by their batting averages: recency -frequency - monetary method of control-ling circulation, manual release.New York:Direct mail/Marketing Association.
  8. Gregg, D. G.,Walczak, S.(2008).Dressing your online auction business for success: an experiment comparing two eBay business.MIS Quarterly,32(3),653-670.
  9. Heider, F.(1958).The Psychology of Interpersonal Relations.New Jersey:Wiley.
  10. Highfall, J.,O'Brien, K.(2007).Bidding and prices for online art auctions: sofa art or investment.Journal of Cultural Economics,31(4),279-292.
  11. Homburg, C.,Droll, M.,Totzek, D.(2008).Customer prioritization: Does it pay off, and how should it be implemented?.Journal of Marketing,72(5),110-130.
  12. Jacoby, J.,Kyner, D.B.(1973).Brand loyalty vs. repeat purchasing behavior.Journal of marketing Research,10(1),1-9.
  13. Jen, L.,Chou, C. H.,Allenby, G. M.(2009).The importance of modeling temporal dependence of timing and quantity in direct marketing.Journal of Marketing Research,46(4),482-493.
  14. Jiang, Z.,Chan, J.,Tan, B.,Chua, W.(2010).Effets of interactivity on website involvement and purchase intention.Journal of the Association for Information Systems,11(1),34-59.
  15. Kauffman, R. J.,Wood, C. A.(2006).Doing their bidding: an empirical examination of factors that affect a buyer's utility in Internet auction.Information Technology and Management,7(3),171-190.
  16. Kim D.J.,Ferrin, D.L.,Rao, H.R.(2009).Trust and satisfaction, two stepping stones for successful e-commerce relationships: a longitudinal exploration.Information System Research,20(2),237-257.
  17. Lascu, D. N.,Zinkhan, G.(1999).Consumer conformity: review and application for marketing theory and practice.Journal of Marketing Theory and Practice,7(3),1-12.
  18. Lee, B.,Cho, H.,Chae, M.,Shim, S.(2010).Empirical analysis of online auction fraud: credit card phantom transactions.Expert Systems with Applications,37(4),2991-2999.
  19. Marcus, C.(1998).A practical yet meaningful approach to customer segmentation.Journal of Consumer Marketing,15(5),494-504.
  20. Pavlou, P.A.,Liang, H.,Xue, Y.(2007).Understanding and mitigating uncertainty in online exchange relationships: a principal - agent perspective.MIS Quarterly,31(1),105-136.
  21. Pfeifer, P.(2005).The optimal ratio of acquisition and retention costs.Journal of Targeting Measurement and Analysis for Marketing,13(2),179-188.
  22. Posselt, T.,Gestner, E.(2005).Pre-sales vs. post-sale e-satisfaction: impact on repurchase intention and overall satisfaction.Journal of Interactive marketing,19(4),35-47.
  23. Qu, Z.,Zhand, H.,Li, H.(2008).Determinants of online merchant rating: content analysis of consumer comments about Yahoo merchants.Decision Support Systems,46(1),440-449.
  24. Reichheld, F.F.,Schefter, P.(2000).E-loyalty: your secret weapon on the web.Harvard Business Review,78(4),105-113.
  25. Reynolds, K. E.,Gilkeson, J. H.,Niedrich, R. W.(2009).The influence of seller strategy on the winning price in online auctions: A moderated mediation model.Journal of Business Research,62(1),22-30.
  26. Srinivasan, S.S.,Anderson, R.,Ponnavolu, K.(2002).Customer loyalty in e-commerce: and exploration of its antecedents and consequences.Journal of Retailing,78(1),41-50.
  27. Sun, C. H.,Liu, K.E.(2010).Information asymmetry and small business in online action market.Small Business Economics,34(4),433-444.
  28. Van Slyke, C.,Shim, J. T.,Johnson, R.,Jiang, J.J.(2006).Concern for information Privacy and online consumer purchasing.Journal of the Association for information Systems,7(6),415-443.
  29. Wei, J. T.,Lin, S. Y.,Wu, H. H.(2010).A review of the application of RFM model.African Journal of Business Management,4(19),4199-4206.
  30. Yen, C. H.,Lu, H. P.(2008).Factors influencing online auction repurchase intention.Internet Research,18(1),7-25.
  31. 何靖遠、陳慧玲、廖致淵(2014)。以RFM 為基礎的消費者平台再購行為預測模型-以Yahoo!奇摩拍賣為例。數據分析,9(1),1-23。
  32. 何靖遠、廖致淵、許文錦(2013)。Yahoo!奇摩拍賣女裝上衣消費者再購行為之預測。2013 ERP 國際學術暨實務研討會,台北:
  33. 林暐勝(2012)。碩士論文(碩士論文)。國立中央大學。