题名 |
運用集成學習分類架構預測信用貸款購買行為 |
并列篇名 |
Predicting fiduciary loan purchasing behavior using ensemble learning model |
DOI |
10.6338/JDA.201412_9(6).0001 |
作者 |
李天行(Tian-Shyug Lee);陳怡妃(I-Fei Chen);施讓龍(Ranglong Shi);呂奇傑(Chi-Jie Lu) |
关键词 |
集成學習 ; 分類技術 ; 信用貸款 ; 信用貸款購買行為 ; Ensemble learning ; classification ; fiduciary loan ; fiduciary loan purchasing behavior |
期刊名称 |
Journal of Data Analysis |
卷期/出版年月 |
9卷6期(2014 / 12 / 01) |
页次 |
1 - 26 |
内容语文 |
繁體中文 |
中文摘要 |
隨著銀行對消費金融業務的重視,信用貸款目前已是許多銀行在消費金融的重點項目之一,因此若能建立有效的信用貸款購買行為預測模式來協助銀行區分出有貸款意願與無貸款意願的消費者,有助於業者有效的找出信用貸款的目標顧客,降低行銷成本並提升銷售成功率。集成學習(ensemble learning)是一種藉由相互結合多種不同建模技術以處理一個特定問題的機器學習方法,其績效通常較單一學習器更佳與更穩健。本研究應用集成學習建構信用貸款消費購買行為預測模式,透過多數投票之方式整合羅吉斯迴歸(Logistic regression, LR)、區別分析(Discriminant analysis, DA),傳遞類神經網路(Back propagation neural network, BPN)、支援向量機(Support vector machines, SVM)及極限學習機(Extreme learning machine, ELM)等五種單一技術的分類結果,以獲得較穩健與準確的購買行為分類結果。本研究以某銀行之信用貸款資料為實證資料,在鑑別正確率、Kappa值及期望誤置成本等三個績效指標下,使用交叉驗證的方式來評估與比較所提之集成學習架構與其他五個模式的分類績效。實證結果顯示,在以每個方法於三種指標績效排名為基準的綜合比較下,集成學習之整體分類績效最佳,不僅有最高的鑑別正確率,也有最低的誤置成本。因此本研究所提之集成學習架構能有效的用於信用貸款購買行為預測,可協助企業未來在進行信用貸款行銷時辨別出具有購買意願客戶。 |
英文摘要 |
In this study, an ensemble learning model is proposed for predicting fiduciary loan purchasing behavior. Ensemble learning is the process by which multiple techniques/models are strategically combined to solve a particular issue. It is mainly applied to improve the performance of single model. In the proposed ensemble learning model, the classification results of the five well-known classification techniques including logistic regression (LR), discriminant analysis (DA), back propagation neural network(BPN), support vector machine(SVM) and extreme learning machine (ELM) are combined by majority voting to generate a better and robust classification model for fiduciary loan purchasing behavior prediction. The cross validation process and three performance indexes including correct classification rate, kappa value and misclassification cost are used to evaluate the performance of the proposed model. Experimental results from a real fiduciary loan data showed that the proposed ensemble learning model outperforms the five single classification methods in terms of correct classification rate and misclassification cost. It is an effective alternative for predicting fiduciary loan purchasing behavior. |
主题分类 |
基礎與應用科學 >
資訊科學 基礎與應用科學 > 統計 社會科學 > 管理學 |
参考文献 |
|