题名

海量資料時代發展與未來應用趨勢之研究

并列篇名

Studying of Big Data Development and Future Application Trends

DOI

10.6338/JDA.201412_9(6).0006

作者

謝邦昌(Ben-Chang Shia);陳文慧(Wen-Hui Chen)

关键词

海量資料 ; 江河運算 ; Hadoop ; Big Data ; Streams Computing ; Hadoop

期刊名称

Journal of Data Analysis

卷期/出版年月

9卷6期(2014 / 12 / 01)

页次

133 - 143

内容语文

繁體中文

中文摘要

隨著電子科技的進步、網際網路與活絡的各式社群媒體平台引領之下,生活智慧化的現象促使了全球數位化資料量快速成長,在這一連串科技與智慧結合之下,「海量資料」成為相當火紅的一詞。關於海量資料應用的相關議題,也廣於各界所討論,許多組織都希望跟上海量資料的潮流,趕上這班載著大批金礦的列車為其組織帶來效益。透過海量資料技術的分析,可以洞悉現況以掌握各種趨勢的脈絡,進而做出適切的決策來因應問題的發生、降低問題的破壞力,甚至預防問題的產生等等。本研究主要針對海量資料的發展,透過國內外企業與研究單位合作的資料、調查報告與文獻等,整理並作進一步分析,用以了解海量資料在各界所發揮的吸引力與影響力。

英文摘要

Due to advances in electronic technology, the Internet and all kinds of active social media devices, with the phenomenon of intelligent life, it promotes the amount of the global digital data growing rapidly. Under which a trend combine technology with wisdom, big data has become a hot phrase. On issues related with big data application, it also be discussed widely by any industry. Many industries want to catch up this trend to generate higher benefits for their own industry. By using the big data analyzing technology, it can have the insight into the current situation in order to grasp the trends of big data, and then make appropriate decisions to respond with the problems, reduce the damage, and even prevent problems, and so on. This study focus on the development of big data, that through the information, research reports and references which produced by domestic or foreign industries with research institution. And then we further analyze to understand the attraction and influence of big data in all industries.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. Leonard-chien:http://wired.tw/2013/07/18/big_data_2/index.html
  2. 鍾張涵(2013.10.15)。巨量資料商機 台灣準備好了嗎。聯合晚報
  3. IBM:http://www-01.ibm.com/software/tw/data/bigdata/
  4. The Economist intelligence Unit (2013). The hype and the hope: The road to big data adoption in Asia-Pacific. USA: Hitachi Data Systems
  5. 甘芝萁(2014.2.19)。賽門鐵克2014 預測:社群媒體仍是犯罪寵兒。自由時報
  6. Splunk:http://www.splunk.com
  7. FACEBOOK:http://newsroom.fb.com/company-info/
  8. Page, L. (2012. April). 2012 Update from the CEO. Google
  9. McKinsey & Company:http://www.mckinsey.com
  10. Bryant, R. E.,Katz, R. H.,Lazowska, E. D.(2008).Big-Data Computing: Creating revolutionary breakthroughs in commerce, science, and society.Washington, DC:Computing Community Consortium.
  11. Davenport, T. H.,Barth, P.,Bean, R.(2012).How 'Big Data' Is Different.MIT Sloan Management Review,July 30
  12. Dean, J.,Ghemawat, S.(2004).MapReduce: Simplified Data Processing on Large Clusters.OSDI'04: Sixth Symposium on Operating System Design and Implementation,San Francisco, CA:
  13. White, T.,Cutting, D.(2010).Hadoop: The Definitive Guide.Sebastopol, CA:O'Reilly Media Inc..
  14. 胡世忠(2013)。雲端時代的殺手級應用:海量資料分析。台北市:天下雜誌股份有限公司。
  15. 黃亦筠(2012)。巨浪來襲 政府、企業的下一場戰爭。天下雜誌,495,50-55。
  16. 嚴勻希(2013)。碩士論文(碩士論文)。台北市,國立台灣科技大學專利研究所。
被引用次数
  1. 陳立邦(2017)。以平行基因演算法於Hadoop平台上建立投資組合。中原大學資訊管理學系學位論文。2017。1-52。