题名

社群媒體大數據與電視收視率質量測量之相關性研究

并列篇名

A Study of Correlation between TV Ratings and Social Media

DOI

10.6338/JDA.201504_10(2).0004

作者

程美華(Mei-Hau Cheng);吳宜蓁(Yi-Chen Wu);陳銘芷(Ming-Chih Chen);謝邦彥(Beng-Yen Hsieh);陳俊傑(Chun-Chieh Chen)

关键词

社群媒體 ; 大數據 ; 電視收視率 ; 臉書 ; social media ; TV Raring ; Facebook

期刊名称

Journal of Data Analysis

卷期/出版年月

10卷2期(2015 / 04 / 01)

页次

55 - 81

内容语文

繁體中文

中文摘要

最近,台灣地區現場直播益智娛樂節目《女王的密室》受到注目。該節目結合APP作為互動工具,節目播出時於APP同步回答問題,此為全球第一例結合APP互動的質播益智娛樂節目。本研究以該節目為研究對象,探討社群數據(包括臉書粉絲頁和APP相關數據)對於電視收視率的影響。本研究發現,節目播出當日的APP登入帳號數量、臉書粉絲評論(comments)、粉絲貼文數以及臉書粉絲團相關貼文的情感係數(sentiment analysis)與收視率TVR具有顯著性的正相關,同時依此建立初步的逐步迴歸預測模型。本研究將進一步探索社群數據對於不同類型節目收視率的相互關係,建立節目收視率之參考模式。

英文摘要

This study demonstrates the use of social media analytics in the context of network television program Mission of the Queen which is the first reality-game show with APP in the world. This study extracted the number of Facebook likes, comments, shares, posts, accounts of APP, login whilst show airing and text of posts. Subsequently, this study applied Pearson product-moment correlation coefficient, stepwise regression method and determined that key social media measures positively affect TV ratings. In essence TV shows with higher number of FB comments and login of APP are likely to associate with higher performance ratings. This study applied text mining technique and sentiment analysis. The result suggests the positive correlation with TV ratings.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. 尼爾森媒體研究,「台灣消費者的多螢生活」,最後上網日期:2015 年5 月1 日,網址:http://www.nielsen.com/content/dam/nielsenglobal/tw/docs/Taiwan-Media-Behavior- Report-2015ch.pdf
  2. Phil Simon(2014.03.11). Big Data Lessons From Netflix, wired.com. Retrieved Jan. 31, 2015,from http://www.wired.com/2014/03/big-data-lessons-netflix/
  3. 資策會 FIND2014H2/「2014 台灣消費者行動裝置暨APP 使用行為調查報告」,調查有效樣本1,068 份,調查時間:2014 年10 月04 日~10 月31 日。
  4. Herman, John (2011.01.31). Why Nielsen Ratings Are Inaccurate, and Why They'll Stay That Way. SPLITSIDER. Retrieved December 29, 2014, from http://splitsider.com/2011/01/why-nielsen-ratings-are-inaccurate-and-whytheyll-stay-that-way/)
  5. 程美華、謝邦彥(2015.04.24)「不造再吵收視率社群大數據成預測工具」,ETtoday東森新聞雲,上網日期:2015.05.01,取自http://www.ettoday.net/news/20150424/497585.htm
  6. 王超群(2015.01.20)。「收視率大調查尼爾森遭控護航綠媒」,中時電子報,上網日期:2015.01.21,取自http://www.chinatimes.com/newspapers/20150120001632-260901。
  7. Subramanyan, Radha,"The Relationship Between Social Media Buzz and TV Ratings". Nielsen, Media and Entertainment , 2011.10.26.Retrieved December 04,2014,from http://www.nielsen.com/us/en/insights/news/2011/the-relationship-between-social-media-buzz-and-tv-ratings.html
  8. Tartakoff, J.(2011.02) In latest anti-"content farm" move, Google changes its search algorithm. paidContent. Retrieved Jan. 10, 2015, from http://paidcontent.org/2011/02/25/419-in-latestanti-content-farm-move-google-changes-its-algorithm/
  9. eMarketer,"TV viewers carry the conversation to social networks.", May 16,2012.最後上網日期:2015 年4 月20 日,網址::http://www.emarketer.com
  10. Hill, Shawndra. (2014).Talkographics: Learning Audience Demographics and Interests, under review.
  11. Smith,A., & Boyles,J. L.(2012)." The rise of "connected viewer"".(Pew Research Center's Internet and American Life Project). Retrieved from http://pewinternet.org/~/media//Files/Reports/2012/PIP_Connected_Viewers.pdf
  12. 薛聖棻(2015.3.22)「「女王的密室」萬萬沒有想到找到生存之道」,聯合報,聯合好評,最後上網日期:2015 年5 月3 日,網址:http://udn.com/news/story/7341/780612-薛聖棻-「女王的密室」-萬萬沒有想到找到生存之道
  13. Rezab, J.(2012). What are the most important social marketing metric? Retrieved Jan. 3,2015, from http://www.socialakers.com/uploads/documents/publications/340.pdf
  14. 尼爾森(2014)。「尼爾森媒體研究新知」,2014 年12 月,上網日期:2015.01.31,取自http://www.magazine.org.tw/ImagesUploaded/news/14216478452850.pdf。
  15. Tribbey,C.(2014, January 14).CEA,NATPE study offers second screen viewing insights. 2ndScreenSociety.com. Retrieved from http://www.2ndscreensociety.com/blog/2014/01/14/cea-natpe-study-offers-second-screen- viewing-insights/
  16. Anderson, C.W.(2011).Between creative and quantified audiences: web metrics and changing patterns of network in local U.S. newsrooms.Journalism: Theory, Practice, Criticism,12(5),550-566.
  17. Bakker(2012).Aggregation, content farms, and huffinization: the rise of low-pay and no-pay journalism.Journalism Practice,6(5-6),627-637.
  18. Ball-Rokeach, Sandra J.,DeFleur, M.L.(1987).A dependency model of mass-media effects.Communication Research,3(1),3-21.
  19. Cattin, P.,Festa, R.,Le Diberder, A.(1994).A model for forecasting the audience of TV programs.Advertising research foundation European society for opinion and audience research symposium,Paris:
  20. Danaher, P.,Lee, J.,Laoucine, K.(2010).Optimal internet media selection.Marketing Science,29(2),336-347.
  21. Danaher, Peter J.,Dagger, Tracey S.,Smith, Michael S.(2011).Forecasting television ratings.International Journal of Forecasting,27(4),1215-1240.
  22. Danaher, Peter J.,Mawhinney(2001).Optimizing television program schedules using choice modeling.Journal of Marketing Research,38(3),298-312.
  23. Danaher, Peter,Dagger, Tracey(2012).Using a nested logit model to forecast television ratings.International Journal of Forecasting,28,607-622.
  24. Dhar, Vasant(2013).Data Science and Prediction.Communications of the ACM,56(12)
  25. Dumenco, S.(2012).Believe the hype? Four things social TV can actually do.Advertising Age,83(16),4-6.
  26. Ferguson, D.A.,Perse, E.M.(1993).Media and Audience influence on channel repertoire.Journal of Broad-Broadcasting & Electronic Media,37(1),31-47.
  27. Greer, Clark F.,Ferguson, D.A.(2014).Tablet computers and traditional television (TV)viewing: Is the iPad replacing TV?.Convergence: The International Journal of Research into New Media Technologies,1-13.
  28. Hill, Shawndra(2014).TV AUDIENCE MEASUREMENT WITH BIG DATA.BIG DATA,2(2),76-86.
  29. Hill, Shawndra(2014).Using Social media to Predict TV Viewship.Tel Aviv, Israel.:Tel Aviv University.
  30. Hill, Shawndra,Benton, Adrian,XU, Jin(2012).Social Media-based Social TV Recommender System.22nd Workshop on Information Technologies and Systems,Orlando, Florida, USA:
  31. Hsieh, Wen-Tai,Chou, Seng-cho T.,Cheng, Yu-Hsuan,Wu, Chen-Ming(2013).Predicting TV Audience Rating with Social Media.IJCNLP, 2013 Workshop on Natural Language Processing for Social Media (Social NLP)
  32. Livingstone, S.(1998).Relationships between media and audiences: Prospects for future audience reception studies.Media, Ritual and Identity: Essays in Homor of Elihu Katz,London:
  33. Mhaisgawali, Amrapali,Giri, Dr Nupur(2014).Detailed Descriptive and Predictive Analytics with Twitter Based TV Ratings.IJCAT International Journal of Computing and Technology,1(4)
  34. Napoli, P.M.(2001).The unpredictable audience: an exploratory analysis of forecasting error for new prime-time network television programs.Journal of Advertising,30(2),53-101.
  35. Napoli, Philip M.(2011).Audience evolution: new technology and the transformation of media audience.New York:Columbia University Press.
  36. Napoli, Philip M.(2014).Lear Center's Media Impact ProjectLear Center's Media Impact Project,未出版
  37. Napoli, Philip M.(2014).On automation in media industries: integrating algorithmic media production into Media industries scholarship.Media Industries Journal,1(1)
  38. Napoli, Philip M.(2013).The algorithm as institution: towards a theoretical framework for automated media production and consumption.The Media in Transition Conference,Cambridge, MA, USA.:
  39. Patelis, A.,Metaxiotis, K.,Nikolopoulos, K.,Assimakopoulos, V.(2003).FOR TV: decision support system for forecasting television viewership.Journal of Computer Information Systems,Summer,100-107.
  40. Wakamiya, Shoko,Lee, Ryong,Sumiya, Kazutoshi(2011).Towards better TV viewing rates: exploiting crowd's media life logs over twitter for TV rating.ICUIMC'11,Seoul, Korea.:
  41. Weber, R.(2002).Methods to forecast television viewing patterns for target audiences.Communication Research in Europe and Abroad-Challenges of the first decade,Berlin:
  42. Webster, J. G.(2011).The duality of media: a structurational theory of public attention.Communication Theory,21,43-66.
  43. Webster, J. G.(2014).The marketplace of attention: how audiences take shape in a digital age.Cambridge, MA:The MIT Press.
  44. Webster, J. G.,Ksiazek, Thomas B.(2012).The dynamic of audience fragmentation: public attention in an age of digital media.Journal of Communication,62,39-56.
  45. Webster, J. H.,Wakshlag, J.J.(1983).A theory of television program choice.Communication Research,10(4),430-446.
  46. Webster, James G.(ed.),Phalen, Patricia F.(ed.),Lichty, Lawrence W.(ed.)(2014).Ratings Analysis: Audience Measurement and Analytics.UK:Routledge.
  47. Yoo, C.Y.,Kim, H.G.(2002).An analysis of prediction error for new prime-time television programs: a competitive study between USA and Korea.International Journal of Advertising,21,525.
  48. 林玉凡(2014)。台灣新媒體趨勢與鉅量資料應用。新媒體趨勢與雲端鉅量資料應用國際研討會,台北市:
被引用次数
  1. 凃蘊修,樊祖燁,林子茵,朱思穎(2019)。”Playmate"-遊戲交友平台行銷企劃之研究。臺北海洋科技大學學報,10(2),1-19。