题名

優勢策略均衡於Nash非線性灰色柏努利模型的應用-以金磚四國股價指數預測為例

并列篇名

Application of Dominant Strategy Equilibrium to Nash Nonlinear Grey Bernoulli Model-An example of BRIC's Stock Indices Forecasting

DOI

10.6338/JDA.201506_10(3).0005

作者

辛沛翰(Pei-Han Hsin)

关键词

灰預測 ; Nash均衡 ; 優勢策略 ; 股價指數 ; Grey forecasting ; Nash equilibrium ; Dominated Strategy ; Stock index

期刊名称

Journal of Data Analysis

卷期/出版年月

10卷3期(2015 / 06 / 01)

页次

95 - 114

内容语文

繁體中文

中文摘要

傳統灰預測模型GM(1,1)在計算處理上是簡單的,但是缺乏高度模型預測能力。Chen (2008)與Chen et. al.(2008)提出Nonlinear grey Bernoulli model(NGBM),將模型冪次方變成可調整參數,大幅提升預測效果;Chen et. al.(2010)引入經濟學理論中的Nash均衡的求解概念,進而提出 Nash NGBM(NNGBM),其研究主要將微分方程式的次方(n)與係數(p)同時轉變成可調整參數,使得模型有更佳的預測能力。然而,Nash均衡解的多重性,也將發生在Nash NGBM之中。有鑑於此,本研究將搜尋最適解的起始點改變,進而找出其他Nash解,再利用優勢策略均衡概念,找出優勢策略Nash解。再者,本研究以已發表文章的個案驗證優勢策略Nash解具有之高度預測能力。最後,本文將上述灰色預測模型預測金磚四國的股票指數,結果發現建模效度依序是優勢策略NNGBM、NNGBM、NGBM以及GM;在金磚四國股價指數預測上皆預測未來五季呈現上揚牛市。

英文摘要

The traditional grey forecasting model is computationally simple but less highly accurate in forecasting. Chen (2008) and Chen et al., (2008) present the nonlinear grey Bernoulli model (NGBM) with adjustable power n to improve the GM (1,1). Chen, Hsin and Wu (2010) propose Nash NGBM with adjustable power n and coefficient p to enhance the forecast ability. However, the multiple solutions come out in Nash NGBM. Thus, this study tries to seek the other Nash solutions by changing the initial point of p. Then, find strictly/weakly dominant strategy among Nash solutions. Moreover, reexamine an example of a published paper to confirm the forecasting ability of the proposed method. Finally, apply the proposed method to predict BRIC's stock indices. The results show that NNGBM with dominant strategy equilibrium is best and BRIC's stock indices will be going up in the future.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. Chang, B. R.,Tsai, H. F.(2008).Forecast approach using neural network adaptation to support vector regression grey model and generalized auto-regressive conditional heteroscedasticity.Experts Systems with Applications,34,925-934.
  2. Chang, S. C.,Lai, H. C.,Yu, H. C.(2005).A variable P value rolling Grey forecasting model for Taiwan semiconductor industry production.Technological Forecasting and Social Change,72(5),623-640.
  3. Chen, C. I.(2008).Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate.Chaos, Solitons and Fractals,37(1),278-287.
  4. Chen, C. I.,Chen, H. L.,Chen, S. P.(2008).Forecasting of foreign exchange rates of Taiwan's major trading partners by novel nonlinear grey Bernoulli model NGBM(1,1).Communications in Nonlinear Science and Numerical Simulation,13(6),1194-1204.
  5. Chen, C. I.,Hsin, P. H.,Wu, C. S.(2010).Forecasting Taiwan's major stock indices by the Nash nonlinear grey Bernoulli model.Experts Systems with Applications,37,7557-7562.
  6. Deng, J. L.(1989).Introduction of Grey system.Journal of Grey System,1(1),1-24.
  7. Hsin, P.-H.,Chen, C. I.(2015).Application of Game Theory on Parameter Optimization of the Novel Two Stage Nash Nonlinear Grey Bernoulli Model.Communications in Nonlinear Science and Numerical Simulation,27,168-174.
  8. Hsu, L. C.(2003).Applying the Grey prediction model to the global integrated circuit industry.Technological Forecasting and Social Change,70,563-574.
  9. Hsu, L.C.(2010).A genetic algorithm based nonlinear grey Bernoulli model for output forecasting in integrated circuit industry.Expert Systems with Applications,37,4318-4323.
  10. Hsu, L.C.(2009).Forecasting the output of integrated circuit industry using genetic algorithm based multivariable grey optimization models.Expert Systems with Applications,36,7898-7903.
  11. Hsu, Y.T.,Liu, M.C.,Yeh, J.,Hung, H.F.(2009).Forecasting the turning time of stock market based on Markov-Fourier grey model.Expert Systems with Applications,36,8597-8603.
  12. Jegadeesh, N.,Titman, S.(2001).Profitability of momentum strategies: An evaluation of alternative explanations.Journal of Finance,56,699-720.
  13. Jiang, Y.,Yao, Y.,Deng, S.,Ma, Z.(2004).Applying Grey forecasting to predicting the operating energy performance of air cooled water chillers.International Journal of Refrigeration,27,385-392.
  14. Kayacan, E.,Ulutas, B.,Kaynak, O.(2010).Grey system theory-based models in time series prediction.Experts Systems with Applications,37,1784-1789.
  15. Lee, C.(1986).Grey system theory in application on earthquake forecasting.Journal of Seismology,4(1),27-31.
  16. Li, G.D.,Yamaguchi, D.,Nagai, M.A.(2007).A GM(1,1) - Markov chain combined model withan application to predict the number of Chinese international airlines.Technological Forecasting and Social Change,74(8),1465-81.
  17. Lin, Y. H.,Lee, P. C.(2007).Novel high-precision grey forecasting model.Automation in Construction,16,771-777.
  18. Liu, S.、Dong, I.、Fang, C.(2004)。The theory of Grey system and its applications。Peking:Science Publishing。
  19. Ou, S.L.(2012).Forecasting agricultural output with an improved grey forecasting model based on the genetic algorithm.Computers and Electronics in Agriculture,85,33-39.
  20. Tseng, F. M.,Yu, H. C.,Tzeng, G. H.(2001).Applied hybrid Grey model to forecast easonal time series.Technological Forecasting and Social Change,67,291-302.
  21. Wang, C.H.,Hsu, L. C.(2008).Using genetic algorithms grey theory to forecast high, technology industrial output.Applied Mathematics and Computation,195(1),256-263.
  22. Wang, Y. F.(2002).Predicting stock price using fuzzy Grey prediction system.Expert Systems with Applications,22,33-39.
  23. Wang, Y.,Dang, Y.,Li, Y.,Liu, S.(2010).An approach to increase prediction precision of GM(1,1) model based on optimization of the initial condition.Expert Systems with Applications,37,5640-5644.
  24. Wang, Z.X.(2013).An optimized Nash nonlinear grey Bernoulli model for forecasting the main economic indices of high technology enterprises in China.Computers & Industrial Engineering,64,780-787.
  25. Wang, Z.X.,Hipel, K.W.,Wang, Q.,He, S.W.(2011).An optimized NGBM(1,1) model for forecasting the qualified discharge rate of industrial wastewater in China.Applied Mathematical Modelling,35,5524-5532.
  26. Wen, K. L.(2004).Grey systems.Tucson, USA:Yang's Scientific Press.
  27. Xu, Q. Y.,Wen, Y. H.(1997).The application of Grey model on the forecast of passenger of international air transportation.Transportation Planning Journal,26(3),525-555.
  28. Yao, A. W. L.,Chi, S. C.(2004).Analysis and design of a Taguchi-Grey based electricity demand predictor for energy management systems.Energy Conversion and Management,45(7),1205-1217.
  29. Yeh, M. F.,Lu, H. C.(1996).A new modified grey model.The Journal of Grey System,8(3),209-216.
  30. Yin, X.G.,Yu, W.D.(2007).The virtual manufacturing model of the worsted yarn based on artificial neural networks and grey theory.Applied Mathematics and Computation,185(1),322-332.
  31. Yong, H.(1995).A new forecasting model for agricultural commodities.Journal of Agricultural Engineering Research,60,227-235.
  32. Zhou, J, R.,Li, Y.,Zhang, Y.,Peng, B.(2009).Parameter optimization of nonlinear grey Bernoulli model using particle swarm optimization.Applied Mathematics and Computation,207(2),292-299.
  33. Zill, D. G.,Cullen, M. R.(2000).Advanced engineering mathematics.Massachusetts:Jones and Bartlett.