题名

A Bayesian Detection for the Number of Change Points in Linear Regression Model

并列篇名

利用貝氏方法偵測改變點個數於線性迴歸模型

DOI

10.6338/JDA.201510_10(5).0003

作者

廖家儀(Chia-Yi Liao);張國清(Kuo-Ching Chang);李宗寶(Chung-Bow Lee);江翠蓮(Chui-Liang Chiang)

关键词

改變點 ; 事後分配 ; 線性迴歸模型 ; Change points ; Posterior distribution ; Linear regression model

期刊名称

Journal of Data Analysis

卷期/出版年月

10卷5期(2015 / 10 / 01)

页次

49 - 78

内容语文

英文

中文摘要

本文使用貝氏方法偵測改變點個數於線性迴歸模型。此為Fan et al.(1996)文章的推廣,從研究簡單線性迴歸到多維度線性迴歸,在分析中,將使用Normal-Gamma事前分配的迴歸參數,並推導出改變點位置及改變點個數的事後分配。在一些溫和的假設下,對於改變點個數及改變點位置的事後估計與真實改變點之間是有界性(Boundedness)而且一致性結果將被建構出。無論迴歸模型之轉折是否連續,利用貝氏方法去偵測改變點個數都是可行的。最後模擬結果將進行探討。

英文摘要

A Bayesian approach is considered to detect the number of change points in linear regression model. The work is the extension of that given by Fan et al. (1996) for simple linear regression. The normal-gamma prior information for the regression parameters is employed in the analysis. The marginal posterior distribution of the location of change points and the number of change points are derived. Under mild assumptions, con-sistency for the number of change points and boundedness between the posterior mode of the location and true location of change points are also established. The Bayesian approach for the detection of the number of change points is suitable whether the switching linear regression is continuous or discontinuous. Some simulat-ed results are given.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. Barry, D.,Hartigan, J. A.(1993).A Bayesian analysis for change point problems.A Bayesian analysis for change point problems,88,309-319.
  2. Barry, D.,Hartigan, J. A.(1992).Product partition models for change point problems.Ann.Statist,20,260-279.
  3. Brown, R. L.,Durbin, J.,Evan, J. M.(1975).Techniques for testing the constancy of regression relationships over time (with Discussion).J. Roy. Statist. Soc. Ser. B,37,149-192.
  4. Chen, J.,Gupta, A. K.(2000).Parametric statistical change point analysis.Boston:Birkhaeuser.
  5. Chernoff, H.,Zacks, S.(1964).Estimating the current mean of a normal distribution which is subject to change in time.Ann. Math. Statist.,35,999-1018.
  6. Chin Choy, J. H.,Broemeling, L. D.(1980).Some Bayesian inferences for a changing linear model.Technnometrics,22,71-78.
  7. Cobb, G. W.(1978).The problem of the Nile: conditional solution to a change point problem.Biometrika,62,243-251.
  8. Fan, T. H.,Chang, K. C.,Lee, C. B.(2006).Bayesian estimation of the number of change points in simple linear regression models.Communications in Statistics-Theory and Methods,35,689-710.
  9. Fearnhead, P.(2005).Exact and efficient Bayesian inference for multiple change point problems.Stat. Comput,16,203-213.
  10. Feder, P. I.(1975).On asymptotic distribution theory in segmented regression problemsidentified case.Ann. Statist.,3(1),49-83.
  11. Ferreira, P. E.(1975).A Bayesian analysis of a switching regrssion model: known number of regimes.J. American Statist. Associ.,70,370-374.
  12. Holbert, D.(1973).Department of Staistics, Oklahoma State University.
  13. Holbert, D.(1982).A Bayesian analysis of a switching linear model.J. Econometrics,19,77-87.
  14. Holbert, D.,Broemling, L. D.(1977).Bayesian inferences related to shifting sequences and two-phase regression.Comm. Statist.-Theory & Methods,A6,265-275.
  15. Hudson, D. J.(1966).Fitting segmented curves whose joint points have to be estimated.J. American Statist. Associ.,61,1097-1129.
  16. Kashiwagi, N.(1991).Bayesian detection of structural changes.Ann.Inst.Statist. Math.,43,77-93.
  17. Lee, C. B.(1995).Estimating the number of change points in a sequence of independent normal random variables.Statist. Probab. Lett.,25,241-248.
  18. Lin, J. G.,Chen, J.,Li, Y.(2012).Bayesian Analysis of Student t Linear regression with Unknown Change-Point and Application to StockData Analysis.Bayesian Analysis of Student t Linear regression with Unknown Change-Point and Application to StockData Analysis,40,203-217.
  19. Maronna, R.,Yohai, V. J.(1978).A bivariate test for the detection of a systematic change in mean.J. American Statist. Associ.,73,640-645.
  20. Ng, N. M.(1990).Bayesian analysis of linear model exhibiting changes in mean and precision at an unknown time point.Comm. Statist.-Theory & Methods,19(1),110-120.
  21. Nosek, K.,Szkutnik, Z.(2008).A power study of k-linear-r-ahead recursive residuals test for change-point in finite sequences.J Stat Comput Simul,78,1199-1211.
  22. Nosek, Konrad(2010).Schwarz information criterion based test for a change-point in regression models.Stat Papers,51,915-929.
  23. Piegorsch, W. W.(1987).Discretizing a normal prior for change point estimation in switching regression.Biometrical J.,7,777-782.
  24. Qiu, P.(1994).Estimation the number of jumps of the jump regression functions.Comm. Statist.-Theory & Methods,23(8),2141-2155.
  25. Quandt, R. E.(1958).The estimation of the parameters of linear regression system obeying two separate regimes.J.American Statist. Associ.,53,873-880.
  26. Seber, G. A. F.(1977).Linear Regression Analysis.New York:John Wiley & Sons.
  27. Seidou, O.,Ouarda, T. B. M. J.(2006).Recursion-based multiple change point detection in multivariate linear regression and application to river stream flows.Water Resour. Res.,43
  28. Venkatraman, E. S.(1992).Consistency results in multiple change-point problems.Technical report,24
  29. West, M.,Harrison, J.(1989).Bayesian Forecasting and Dynamic Models.New York:Springer-Verlag.
  30. Worsley, K. J.(1983).Testing for a two phase multiple regression.Technometrics,25,35-42.
  31. Yao, Y. C.(1988).Estimating the number of the change-point by Schwarz's criterion.Statist. Probab. Lett.,6,181-187.
  32. Yao, Y. C.,Au, S. T.(1989).Least-squares estimation of a step function.Sankhya ser. A,51,370-381.
  33. Yin, Y. Q.(1988).Detection of the number, locations and magnitudes of jumps.Comm. Statist. Stochastic Models,4,445-455.
  34. Zhou, H.,Liang, K.(2008).On estimation the change point in generalized linear models.Institute of Mathematical Statistic,1,305-320.