题名

大数据信用评价的进展与挑战

并列篇名

Progress and Challenges of Credit Evaluation for Big Data

DOI

10.6338/JDA.201612_11(6).0001

作者

张波(Bo Zhang);杨翰方(Han Fang Yang);王汉生(Han Sheng Wang)

关键词
期刊名称

Journal of Data Analysis

卷期/出版年月

11卷6期(2016 / 12 / 01)

页次

1 - 12

内容语文

簡體中文

中文摘要

信用评价一直是商业、管理活动的重要问题。随着数据可获得性的提高,新的信用需求催生出大数据信用评价的兴起,带动了产业的更替与发展,组织的裂变与融合,及技术继承与创新。在此国内外的研究成果丰富的理论支撑基础上,完善和拓展微观信用评价理论与相关方法成为学术研究的热点。基于个人、中小企业在社会经济活动对征信供给的要求,我们认为大数据信用评价现阶段存在着四大挑战:基于大数据技术改变现有信用评价模式;构建大数据环境下信用指标体系;针对信用数据的特征建立结构化与非结构化数据模型;整合多种数据来源构建信用模型。

英文摘要

Credit evaluation has always been an important issue in business and management activities. With the improvement of data availability, the new credit demand has spawned the rise of large data credit evaluation, not only led to the replacement and development of the industry, but also led to the organization of fission and integration and technology inheritance and innovation. On the basis of the rich theoretical support at home and abroad, perfecting and expanding the micro credit evaluation theory and related methods have become the focus of academic research. Based on the request of individual and small and small and medium enterprises in the credit supply of social economic activities, we believe that there are four challenges in the process of large data credit evaluation: changing the existing credit evaluation model based on big data technology; constructing credit index system under big data environment; constructing structured and unstructured data models for the characteristics of credit data; constructing a credit model by consolidating multiple data sources.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. 中国人民银行征信中心与金融研究所联合课题组(2014)。互联网信贷、信用风险管理与征信。金融研究,2014(10),133-147。
  2. 方匡南、范新妍、马双鸽(2016)。基于网络结构LOGISTIC模型的企业信用风险预警。统计研究,33(4),50-55。
  3. 高军、崔颖、刘桐嘉(2016)。构建我国个人征信机构评价指标体系的思考。征信,2016(3),37-40。
  4. 赵岳、谭之博(2012)。电子商务、银行信贷与中小企业融资—一个基于信息经济学的理论模型。经济研究,2012(7),99-112。
  5. 黄岚、张晓晖、殷树友(2007)。个人征信系统数据仓库与信用评估模型的构建。中国管理信息化(综合版),2007(6),60-64。