题名

電影票房總是與口碑不一致?建構口碑與電影票房之分類模式

并列篇名

Constructing the U.S. movie classification model

DOI

10.6338/JDA.201806_13(3).0001

作者

李永新(Yung Hsin Lee);陳怡妃(I-Fei Chen);鄔欣佑(Sin-You Wu)

关键词

鑑別分析 ; 多元適應性雲形迴歸 ; 分類回歸樹 ; 票房 ; multivariate adaptive regression splines (MARS) ; box office forecasting ; classification and regression tree(CART) ; linear discriminant analysis

期刊名称

Journal of Data Analysis

卷期/出版年月

13卷3期(2018 / 06 / 01)

页次

1 - 24

内容语文

繁體中文

中文摘要

在科技的進步下,近年來電影產業發展快速,票房在全球逐年突破新紀錄,而市場上任何一部電影上映之後,最終以「高口碑高票房」、「高口碑低票房」、「低口碑高票房」、「低口碑低票房」,這四種結局找到歸宿,過去研究中沒有一個分類標準來區分這四種結局,故本研究利用電影相關特性來做為區分票房與口碑之重要變數,並利用鑑別分析(LDA)、多元適應性雲形迴歸(MARS)、分類回歸樹(CART)等分類方法,探討影響分類的決定因素以及其影響程度。結果顯示,本研究使用多元適應性雲形迴歸,在分類準確率明顯優於另外兩種分類方法,CART整體準確率雖較差,但透過CART分類規則,可以找出隱藏在資料中的重要影響變數,可提供電影產業相關業者,利用現有的資源與網路資源,掌握電影票房銷售與口碑可能落點,並規劃應對的行銷方案,創造出更大的收益結果。

英文摘要

Due to advances in technology, the rapidly developing of film industry breakthrough a new record of box office year after year in the global in recent years. After a movie releasing on the market will ultimately to 「High WOM High box office」、「High WOM low box office」、「low WOM High box office」、「low WOM low box office」 these four outcomes as classification. Previous study have no criteria to distinguish these four outcomes before. Therefore, our thesis takes advantage of film characteristics to classify these four types of movies by multivariate adaptive regression splines (MARS), classification and regression tree(CART) and linear discriminant analysis (LDA). The empirical results show that MARS outperformed the other two techniques and also identified the important factors which matter these four movie types.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. 何文程、林霖、簡志健(2011)。奧斯卡得獎男女演員對電影票房收入效應之探討。東海管理評論,12(1),151-186。
    連結:
  2. 顏怡音、韓千山(2012)。企業信用風險指標對智慧資本影響企業價值之干擾效果。東吳經濟商學學報
    連結:
  3. Agag, G.,El-Masry,A.A.(2016).Understanding consumer intention to participate in online travel community and effects on consumer intention to purchase travel online and WOM: An integration of innovation diffusion theory and TAM with trust.Computers in Human Behavior,60,97-111.
  4. Anast, P.(1967).Differenttial Movie Appeals as Correlates of Attendance.Journalism Quarterly,44(1),86-90.
  5. Basuroy, S.,Chatterjee, S.,Ravid, A. S.(2003).How critical are critical reviews? The box office effects of film critics, star power, and budgets.Journal of Marketing,67(4),103-117.
  6. Carvalho, N. B.,Minim, V. P. R.,Nascimento, M.,Vidigal, M. C. T. R.,Ferreira, M. A. M.,Gonçalves, A. C. A.,Minim, L. A.(2015).A discriminant function for validation of the cluster analysis and behavioral prediction of the coffee market.Food Research International,77(Part 3),400-407.
  7. Chen, P.Y.,Wu, S.Y.,Yoon, J.(2004).The Impact of Online Recommendations and Consumer Feedback on Sales.Proceedings of the 25th Annual International Conference Information Systems,Washington, DC., USA.:
  8. d'Astous, A.,Touil, N.(1999).Consumer evaluations of movies on the basis of critics' judgments.Psychology and Marketing,16(8),677-694.
  9. d'Astous, Alain,Nadia(1999).Consumer evaluations of movies on the basis of critics' judgments.Psychology and Marketing,16(8),677-694.
  10. Davis, A.,Khazanchi, D.(2008).An empirical study of online word of mouth as a predictor for multi-product category e-commerce sales.Electronic Markets,18(2),130-141.
  11. Deconinck, E.,Zhang, M. H.,Petitet, F.,Dubus, E.,Ijjaali, I.,Coomans, D.,Vander Heyden, Y.(2008).Boosted regression trees, multivariate adaptive regression splines and their two-step combinations with multiple linear regression or partial least squares to predict blood-brain barrier passage: A case study.Analytica Chimica Acta,609(1),13-23.
  12. Dellarocas, C.,Zhang, X.M.,Awad, N.F.(2007).Exploring the value of online product reviews in forecasting sales: the case study of motion pictures.Journalof Interactive Marketing,21(4),23-45.
  13. Einav, L.(2007).Seasonality in the U.S. Motion Picture Industry.The RAND Journal of Economics,38(1),127-145.
  14. Frederick, L.,VanDerslice, J.,Taddie, M.,Malecki, K.,Gregg, J.,Faust, N.,Johnson, W. P.(2016).Contrasting regional and national mechanisms for predicting elevated arsenic in private wells across the united states using classification and regression trees.Water Research,91,295-304.
  15. Ghiassi, M.,Lio, D.,Moon, B.(2015).Pre-production forecasting of movie revenues with a dynamic artificial neural network.Expert Systems with Applications,42(6)
  16. Huang, P.,Lai, Z.,Gao, G.,Yang, G.,Yang, Z.(2016).Adaptive linear discriminant regression classification for face recognition.Digital Signal Processing,55,78-84.
  17. Kim, T.,Hong, J.,Kang, P.(2015).Box office forecasting using machine learning algorithms based on SNS data.International Journal of Forecasting,31(2),364-390.
  18. Kulkarni, G.,Kannan, P.,Moe, W.(2012).Using Online Search Data to Forecast New Product Sales.Decision Support Systems,52(3),604-611.
  19. Lee, K.,Koo, D.(2015).Evaluating right versus just evaluating online consumer reviews.Computers in Human Behavior,45,316-327.
  20. Litman, B. R.,Kohl, L. S.(1989).Predicting Financial Success of Motion Pictures: The '80s Experience.Journal of Media Economics,2(2),35-50.
  21. Litman, B.R.(1983).Predicting success of theatrical movies: an empirical study.Journal of Popular Culture,16(4),159-175.
  22. Liu, Y.(2006).Word of mouth for movies: Its dynamics and impact on box office revenue.Journal of Marketing,70(3),74-89.
  23. Miguéis, V. L.,Camanho, A.,Falcãoe Cunha, J.(2013).Customer attrition in retailing: An application of multivariate adaptive regression splines.Expert Systems with Applications,40(16)
  24. Mishra, P.,Bakshi, M.,Singh, R.(2016).Impact of consumption emotions on WOM in movie consumption: Empirical evidence from emerging markets.Australasian Marketing Journal,24(1),59-67.
  25. Neelamegham, R.,Chintagunta, P.(1999).A Bayesian Model to Forecast New Product Performance in Domestic and International Markets.Marketing Science,18(2),115-136.
  26. Piwczyński, D.,Sitkowska, B.,Wiśniewska, E.(2012).Application of classification trees and logistic regression to determine factors responsible for lamb mortality.Small Ruminant Research,103(2-3),225-231.
  27. Ravid, S.A.(1999).Information, blockbusters, and stars: a study of the film industry.The Journal of Business,72(4),463-492.
  28. Romano, R.,Davino, C.,Næs, T.(2014).Classification trees in consumer studies for combining both product attributes and consumer preferences with additional consumer characteristics.Food Quality and Preference,33,27-36.
  29. Shahbazi, F.,Asl, B. M.(2015).Generalized discriminant analysis for congestive heart failure risk assessment based on long-term heart rate variability.Computer Methods and Programs in Biomedicine,122(2),191-198.
  30. Simonoff, J.,Sparrow, I.(2000).Predicting Movie Grosses: Winners and Losers, Blockbusters and Sleepers.Chance,13(3),15-24.
  31. Wang, Q.(2010).Canada,Concordia University.
  32. Zhan, G.,Yan, X.,Zhu, S.,Wang, Y.(2016).Using hierarchical tree-based regression model to examine university student travel frequency and mode choice patterns in china.Transport Policy,45,55-65.
  33. Zhou, W.,Duan, W.(2015).An empirical study of how third-party websites influence the feedback mechanism between online word-of-mouth and retail sales.Decision Support Systems,76,14-23.
  34. Zhu, F.,Zhang, X.(2010).Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics.Journal of Marketing,74(2),133-148.
  35. 史靄琍(2012)。碩士論文(碩士論文)。新北市,政治大學國際傳播英語碩士學程(IMICS)。
  36. 江淑娟(2003)。碩士論文(碩士論文)。台中,逢甲大學。
  37. 吳紹安(2016)。電影產業經營模式。證卷櫃台雙月刊,162,58-62。
  38. 袁愛清(2013)。高票房低口碑悖論模型的研究。新聞界,13,47-51。
  39. 郭宗麟(2009)。新北市,台北科技大學。
  40. 陳麒文(2011)。博士論文(博士論文)。國立體育大學指育研究所。
  41. 陳麒文(2002)。顧客流失分析模式之個案研究─以臺灣H健康休閒俱樂部為例。臺灣體育運動管理學報,5
  42. 黃炳翔(2014)。碩士論文(碩士論文)。新北市,淡江大學管理科學研究所碩士班。
  43. 黃琬玲、王信文(2007)。建構電影文化創意產業之成功行銷模式:以美國賣座票房電影爲例。萬能商學學報,12,51-68。
  44. 蔡瑤昇、呂文琴、高國書、郭宗麟(2011)。網路口碑特性與電影票房銷售之動態關係研究。中華管理評論國際學報,14(4)
  45. 簡妤庭(2015)。碩士論文(碩士論文)。新北市,淡江大學管理科學研究所碩士班。
  46. 顏志龍(2007)。碩士論文(碩士論文)。台北市,臺灣大學經濟學研究所。