题名

應用與比較多種資料探勘預測技術於電腦代理商銷售預測之研究

并列篇名

Forecasting sales for computer reseller: A Comparison of BPN, SVR, MARS and CMAC models

DOI

10.6338/JDA.201806_13(3).0004

作者

呂奇傑(Chi-Jie Lu);蘇子庭(Zi-Ting Su)

关键词

銷售預測 ; 資料探勘 ; 多元適應性雲形迴歸 ; 支援向量迴歸 ; 類神經網路 ; Sales forecasting ; data mining ; multivariate adaptive regression splines ; support vector regression ; neural network

期刊名称

Journal of Data Analysis

卷期/出版年月

13卷3期(2018 / 06 / 01)

页次

51 - 63

内容语文

英文

中文摘要

銷售預測在供應鏈管理中佔有相當重要之角色,且資訊產業相較於其他產業而言,變動更加快速。因此若能建構一個精確有用的銷售預測模式,便可增進企業在供應鏈以及銷售管理的能力。本研究透過多種資料探勘(data mining)預測技術,包括倒傳遞類神經網路(back-propagation network, BPN)、支援向量迴歸(support vector regression, SVR)、多元適應性雲形迴歸(multivariate adaptive regression splines, MARS)以及小腦系統控制器(cerebellar model articulation controller, CMAC)等方法對資訊產業做銷售預測及應用。本研究應用某電腦品牌代理商之每月銷售資料為實證資料,評估資料探勘預測技術於電腦代理商銷售預測的有效性。實證結果顯示,在單一模式下,MARS與SVR的預測準確率較佳,BPN與CMAC的預測績效較差;而在混合模式下,則以整合MARS與SVR的預測模式較佳。

英文摘要

Sales forecasting is one of the most important issues in managing computer reseller since computer products are characterized by product variety, rapid specification changes and rapid price declines. In this study, we use four different data mining prediction methods including back-propagation network (BPN), support vector regression (SVR), multivariate adaptive regression splines (MARS) and cerebellar model articulation controller (CMAC) to forecast sales for computer reseller and compare their forecasting performance. Experimental results from a real sales data of computer reseller show that the prediction accuracy of single MARS and single SVR models are the better than that of single BPN and CMAC. The integrated MARS-SVR model outperforms all other four single and two integrated forecasting models and is a promising model for forecast sales for computer reseller.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. Berry, M. J. A.,Linoff, G.(1997).Data mining technique: For marketing, sales, and customer support.NY:John Wiley & Sons.
  2. Carbonneau, R.,Vahidov, R.,Laframboise, K.(2007).Machine learning-based demand forecasting in supply chains.International Journal of Intelligent Information Technologie,30,40-57.
  3. Celia, F.,Ashish, G.,Amar, R.,Les, S.(2003).Forecasting women's apparel sales using mathematical modeling.International Journal of Clothing Science and Technology,15(2),107-125.
  4. Chang, P. C.,Liu, C. H.,Fan, C. Y.(2009).Data clustering and fuzzy neural network for sales forecasting: A case study in printed circuit board industry.Knowledge Based Systems,11,344-355.
  5. Chang, P. C.,Liu, C. H.,Wang, Y. W.(2006).A hybrid model by clustering and evolving fuzzy rules for sales decision supports in printed circuit board industry.Decision Support Systems,42,1254-1269.
  6. Chang, P. C.,Wang, Y. W.(2006).Fuzzy Delphi and back-propagation model for sales forecasting in PCB industry.Expert Systems with Applications,30,715-726.
  7. Chang, P. C.,Wang, Y. W.,Liu, C. H.(2007).The development of a weighted evolving fuzzy neural network for PCB sales forecasting.Expert Systems with applications,32,86-96.
  8. Chen, K. Y.,Wang, C. H.(2007).Support vector regression with genetic algorithms in forecasting tourism demand.Tourism Management,28,215-226.
  9. Efendigil, T.,Önüt, S.,Kahraman, C.(2009).A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis.Expert Systems with Application,36,6697-707.
  10. Fayyad, U.,Piatetsky-Shapiro, G.,Smyth, P.(1996).The KDD process for extracting useful knowledge from volumes of data.Communications of the ACM,39(11),27-34.
  11. Friedman, J. H.(1991).Multivariate Adaptive Regression Splines (with discussion).The Annals of Statistics,19,1-141.
  12. Goh, C.,Law, R.(2002).Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention.Tourism Management,23,499-510.
  13. Huang, W.,Nakamori, Y.,Wang, S. Y.(2005).Forecasting stock market movement direction with support vector machine.Computer and Operations Research,32,2513-2522.
  14. Hyunchul, A.,Eunsup, C.,Ingoo, H.(2007).Extracting underlying meaningful fearures and canceling noise using independent component analysis for direct marketing.Expert Systems with Applications,33,181-191.
  15. Ilan, A.,Min, Q.,Sadowski, R. J.(2001).Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods.Journal of Retailing and Consumer Services,8,147-156.
  16. Kim, K. J.(2003).Financial time series forecasting using support vector machines.Neurocomputing,55,307-319.
  17. Kiran, N. J.,Ravi, V.(2008).Software reliability prediction by soft computing techniques.The Journal of Systems and Software,81,576-583.
  18. Kuo, H. C.(2009).CMAC-based neuro-fuzzy approach for complex system modeling.Neurocomputing,72,1763-1774.
  19. Kuo, R. J.,Xue, K. C.(1998).A decision support system for sales forecasting through fuzzy neural networks with asymmetric fuzzy weights.Decision Support Systems,24,105-126.
  20. Kuo, R. J.,Xue, K. C.(1999).Fuzzy neural networks with application to sales forecasting.Fuzzy Sets and Systems,108,123-143.
  21. Lee, T. S.,Chen, I. F.(2005).A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines.Expert Systems with Applications,28,743-752.
  22. Lee, T. S.,Chiu, C. C.,Chou, Y. C.,Lu, C. J.(2006).Mining the customer credit using classification and regression tree and multivariate adaptive regression splines.Computational Statistics & Data Analysis,50,1113-1130.
  23. LeVee, G. S.(1993).The key to understanding the forecasting process.Journal of Business Forecasting,11(4),12-16.
  24. Lim, C.,McAleer, M.(2002).Times series forecasts of international travel demand for Australia.Tourism Management,23,389-396.
  25. Lu, C.-J.,Wu, J.-Y.(2009).Forecasting financial time series via an efficient CMAC neural network.Advances in Neural Network Research and Applications
  26. Luis, A.,Richard, W.(2007).Improved supply chain management based on hybrid demand forecasts.Applied Soft Computing,7,136-144.
  27. Michael, J. A. B.,Gordon, S.(2004).Data Mining Techniques for Marketing, Sales, and Customer Relationship Management.NY:John Wiley & Sons, Inc..
  28. Pai, F. P.,Lin, C. S.(2005).A hybrid ARIMA and support vector machines model in stock price forecasting.Omega,33,497-505.
  29. Pai, P. F.,Lin, C. S.(2005).Using support vector machines in forecasting production values of machinery industry in Taiwan.International Journal of Advanced Manufacturing Technology,27(1),205-210.
  30. Pedregal, D. J.,Young, P. C.(2008).Development of improved adaptive approaches to electricity demand forecasting.Journal of the Operational Research Society,59,1066-76.
  31. Qiaolin, D.,Jing, T.,Jianxin, L.(2005).Application of new FCMAC neural network in power system marginal price forecasting.The 7th International Power Engineering Conference
  32. Tay, F. E. H.,Cao, L.(2001).Application of support vector machines in financial time series forecasting.Omega,29,309-317.
  33. Tsai, T. -H.,Lee, C.-K.,Wei, C. -H(2009).Neural network based temporal feature models for short-term railway passenger demand forecasting.Expert Systems with Applications,36,3728-36.
  34. Vapnik, V. N.(2000).The Nature of Statistical Learning Theory.New York, NY.:Springer.
  35. Zareipour, H.,Bhattacharya, K.,Canizares, C. A.(2006).Forecasting the hourly Ontario energy price by multivariate adaptive regression splines.Power Engineering Society General Meeting
  36. Zhang, G.,Patuwo, B. E.,Hu, M. Y.(1998).Forecasting with artificial neural network: The state of the art.International Journal of Forecasting,14,35-62.
  37. Zhou, Y.,Leung, H.(2007).Predicting objected-oriented software maintainability using multivariate adaptive regression splines.The Journal of Systems and Software,80,1349-1361.