题名

預付-現金-信用交易條件下關於具有效期限之退化性物品的存貨模式

并列篇名

AN INVENTORY MODEL FOR DETERIORATING ITEMS WITH EXPIRATION DATE UNDER ADVANCE-CASH-CREDIT PAYMENTS

DOI

10.6338/JDA.201906_14(3).0001

作者

楊志德(Chih-Te Yang);顏秀鳳(Hsiu-Feng Yen);范登翔(Deng-Xiang Fan)

关键词

存貨模式 ; 預付-現金-信用交易 ; 存貨水準相依需求 ; 退化性物品 ; Inventory model ; Advance-cash-credit payments ; Inventory level dependency ; Deterioration Items

期刊名称

Journal of Data Analysis

卷期/出版年月

14卷3期(2019 / 06 / 01)

页次

1 - 20

内容语文

繁體中文

中文摘要

本研究主要探討在允許預付-現金-信用交易條件的交易條件下,建立一個考慮變動需求且具有效期限之退化性物品的存貨模式。在此模式中,我們假設需求率與新鮮度跟貨架陳列水準有關,以及退化性物品具有效期限。本研究主要的目的是決定最適的時間長度、補貨期間長度及訂購量使得零售商的全年總利潤為最大。藉由數學分析,我們找出上述信用交易條件下的最適決策與最適全年總利潤。進一步,我們利用幾個較符合實際的數值範例來說明求解程序並對主要參數進行敏感性分析。最後根據數值分析結果,找出相關的管理意涵與研究結論,並期望能提供給決策者擬定訂購策略時的參考。

英文摘要

This study mainly discusses the conditions for allowing advance-cash-credit payments trade conditions, establish an inventory model for deteriorating items with effective deadlines. The demand rate is assumed to be related to freshness and the shelf display level. The main purpose is to determine the optimal length of time, the length of the replenishment period and the order volume so that the retailer's total profit for the year is the maximum. Through mathematical analysis, we find out the optimal decisions and the optimal total annual profit under the above credit transaction conditions. Further, we use several realistic examples to illustrate the solution and perform a sensitivity analysis on the main parameters. Finally, according to the results of numerical analysis, to find out the relevant management implications and research conclusions, and hope to provide a reference for decision makers when formulating ordering strategies.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 管理學
参考文献
  1. Aggarwal, S. P.,Jaggi, C. K.(1995).Ordering policies of deteriorating items under permissible delay in payments.Journal of the Operational Research Society,46,658-662.
  2. Baker, R. C.,Urban, T. L.(1988).A deterministic inventory system with an inventory-level-dependent demand rate.Journal of the Operational Research Society,39,823-831.
  3. Chang, C. T.(2004).An EOQ model for deteriorating items under inflation when supplier credits linked to order quantity.International Journal of Production Economics,88,307-316.
  4. Chang, H. J.,Dye, C. Y.(2001).An inventory model for deteriorating items with partial backlogging and permissible delay in payments.International Journal of Systems Science,32,345-352.
  5. Chang, H.J.,Dye, C. Y.(1999).An EOQ model for deteriorating items with time varying demand and partial backlogging.Journal of the Operational Research Society,50,1176-1182.
  6. Cohen, M. A.(1977).Joint pricing and ordering policy for exponentially decaying inventory with known demand.Naval Research Logistics Quarterly,24(2),257-268.
  7. Covert, R. P.,Philip, G. C.(1973).An EOQ model for items with Weibull distribution deterioration.AIIE transactions,5(4),323-326.
  8. Dye, C.Y.,Chang, H. J.,Teng, J. T.(2006).A deteriorating inventory model with time-varying demand and shortage-dependent partial backlogging.European Journal of Operational Research,172(2),417-429.
  9. Fujiwara, O.(1993).EOQ models for continuously deteriorating products using linear and exponential penalty costs.European Journal of Operational Research,70(1),104-114.
  10. Ghare, P. M.,Schrader, G. F.(1963).A model for exponentially decaying inventory.Journal of industrial Engineering,14(5),238-243.
  11. Goyal, S. K.(1985).Economic order quantity under conditions of permissible delay in payments.Journal of the Operational Research Society,36,335-338.
  12. Hardie, B. G.,Johnson, E. J.,Fader, P. S.(1993).Modeling loss aversion and reference dependence effects on brand choice.Marketing Science,12(4),378-394.
  13. Huang, Y. F.,Chung, K. J.(2003).Optimal replenishment and payment policies in the EOQ model under cash discount and trade credit.Asia-Pacific Journal of Operational Research,20,177-190.
  14. Jamal, A. M.,Sarker, B. R.,Wang, S.(1997).An ordering policy for deteriorating items with allowable shortage and permissible delay in payment.Journal of the Operational Research Society,48,826-833.
  15. Khanra S.,Ghosh, S. K.,Chaudhuri, K. S.(2011).An EOQ model for a deteriorating item with time dependent quadratic demand under permissible delay in payment.Applied Mathematics and Computation,218,1-9.
  16. Li, R.,Chan, Y.L,Chang, C.T.,Cárdenas-Barró, L.E.(2017).Pricing and lot-sizing policies for perishable products with advance-cash-credit payments by a discounted cash-flow analysis.International Journal of Production Economics,193,578-589.
  17. Liao, H. C.,Tsai, C. H.,Su, C. T.(2000).An inventory model with deteriorating items under inflation when a delay in payment is permissible.International Journal of Production Economics,63,207-214.
  18. Mandal, B. N.,Phaujdar, S.(1989).An inventory model for deteriorating items and stock-dependent consumption rate.Journal of the Operational Research Society,40,483-488.
  19. Musa, A.,Sani, B.(2012).Inventory ordering policies of delayed deteriorating items under permissible delay in payments.International Journal of Production Economics,136,75-83.
  20. Ouyang, L. Y.,Chen, M. S.,Chuang, K. W.(2002).Economic order quantity model under cash discount and payment delay.International Journal of Information Management Sciences,13,1-10.
  21. Papachristos, S.,Skouri, K.(2000).An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type–backlogging.Operations Research Letters,27,175-184.
  22. Philip, G. C.(1974).A generalized EOQ model for items with Weibull distribution deterioration.AIIE Transactions,6(2),159-162.
  23. Qin, Y.,Wang, J.,Wei, C.(2014).Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously.International Journal of Production Economics,152,42-48.
  24. Sarkar, B.(2012).An EOQ model with delay in payments and time varying deterioration rate.Mathematical and Computer Modelling,55,367-377.
  25. Sarker, B. R.,Mukherjee, S.,Balan, C. V.(1997).An order-level lot size inventory model with inventory-level dependent demand and deterioration.International Journal of Production Economics,48,227-236.
  26. Shinn, S. W.,Hwang, H.(2003).Optimal pricing and ordering policies for retailers under order-size dependent delay in payments.Computers and Operations Research,30,35-50.
  27. Teng, J. T.(2002).On the economic order quantity under conditions of permissible delay in payments.Journal of the Operational Research Society,53,915-918.
  28. Wang, S. P.(2002).An inventory replenishment policy for deteriorating items with shortages and partial backlogging.Computers & Operations Research,29,2043-2051.
  29. Wang, W.C.,Teng, J.T.,Lou, K.R.(2014).Seller's optimal credit period and cycle time in a supply chain for deteriorating items with maximum lifetime.European Journal of Operational Research,232,315-321.
  30. Wang, X.,Li, D.(2012).A dynamic product quality evaluation based pricing model for perishable food supply chains.Omega,40(6),906-917.
  31. Wu, J.,Ouyang, L. Y., C.,Cárdenas-Barrón, L. E.,Goyal, S. K.(2014).Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade credit financing.European Journal of Operational Research,237,898-908.
  32. Wu, J.,Teng, J.T.,Chan, Y.L.(2017).Inventory policies for perishable products with expiration dates and advance-cash-credit payment schemes.International Journal of Systems Science: Operations & Logistics
  33. Zhou, Y. W.,Lau, H. S.(2000).An economic lot-size model for deteriorating items with lot-size dependent replenishment cost and time-varying demand.Applied Mathematical Modelling,24(10),761-770.