题名

探究九年級生推論形式之邏輯結構的建構與轉化

并列篇名

Construction and Transformation of Logical Structures in Ninth-graders' Inferring Types

DOI

10.6278/tjme.20170914.001

作者

謝佳叡(Chia-Jui Hsieh);唐書志(Shu-Jyh Tang)

关键词

推論形式 ; 數學探索 ; 數學論證 ; 數學證明 ; 邏輯結構 ; inferring type ; exploration ; argumentation ; proof ; logical structure

期刊名称

臺灣數學教育期刊

卷期/出版年月

4卷2期(2017 / 10 / 01)

页次

1 - 32

内容语文

繁體中文

中文摘要

本研究基於EP-spectrum,將學生的數學證明之演繹推理發展視為是從探索、論證,再到證明的過程。本研究的基本立場是,學生對於幾何的探索與論證活動能提供學生證明所需邏輯結構之預先經驗,因而透過探索與論證活動學生對於證明的學習可用回想與轉化以取代重新建構。因此,本研究主要目的是探討學生在參與幾何探索和論證活動時展現的推論形式,從而分析、比較學生在探索、論證和證明區段所展現之推論形式推測學生的邏輯結構之建構與轉化。為了能考察學生如何理解與學習數學幾何證明過程,本研究設計一系列幾何性質的探索教學活動,並實際進入課堂對35位九年級學生進行教學形式演繹,透過這樣的教學試驗,本研究發現學生在一系列的學習活動中,從探索到證明所呈現出的推論形式其背後反映之邏輯結構彼此的連續性與不連續性,研究結果也顯示,學生透過這樣的探索與論證活動有助於學生演繹推理發展和數學證明的學習。

英文摘要

This study followed the Exploration-Proof Spectrum, [EP-Spectrum], by observing the development of deductive reasoning to provide evidence of the spectrum from exploration to argumentation and then to proof production. The aim of this study was to evaluate students' performance at making inferences during explorative and argumentative activities. The teaching experiment, employing the exploration approach, was conducted with a class of 35 ninth-graders in Taiwan. We compared the different types of inferences made during exploration, argumentation, and proof. Through a teaching experiment concerning one specific geometric property, the study discovered that the continuity and discontinuity of a logical structure exists in each stage prior to the proof stage, and some results demonstrated that exploration and argumentation are useful to students' deductive reasoning.

主题分类 基礎與應用科學 > 數學
社會科學 > 教育學
参考文献
  1. Ball, D. L.,Hoyles, C.,Jahnke, H. N.,Movshovitz-Hadar, N.(2002).The teaching of proof.Proceedings of the International Congress of Mathematicians,Beijing, China:
  2. Bishop, A.(Ed.),Clements, M. A. K.(Ed.),Keitel-Kreidt, C.(Ed.),Kilpatrick, J.(Ed.),Laborde, C.(Ed.)(1996).International handbook of mathematics education.Dordrecht, The Netherlands:Kluwer Academic Publishers.
  3. Durand-Guerrier, V.,Boero, P.,Douek, N.,Epp, S. S.,Tanguay, D.(2012).Argumentation and proof in the mathematics classroom.Proof and proving in mathematics education: The 19th ICMI study,Dordrecht, The Netherlands:
  4. Epp, S.(2003).The role of logic in teaching proof.The American Mathematical Monthly,110(10),886-899.
  5. Garnham, A.,Oakhill, J.(1994).Thinking and reasoning.Cambridge, MA:Basil Blackwell.
  6. Hanna, G.(2000).Proof, explanation, and exploration: An overview.Educational Studies in Mathematics,44(1-3),5-23.
  7. Hanna, G.,de Villiers, M.,Arzarello, F.,Dreyfus, T.,Durand-Guerrier, V.,Jahnke, H. N.,Yevdokimov, O.(2009).ICMI study 19: Proof and proving in mathematics education: Discussion document.Proceedings of the ICME Study 19 Conference: Proof and Proving in Mathematics Education,Taipei, Taiwan:
  8. Hirsch, C. R.(Ed.),Zweng, M. J.(Ed.)(1985).The secondary school mathematics curriculum: 1985 yearbook.Reston, VA:National Council of Teachers of Mathematics.
  9. Hsieh, F. J.,Horng, W. S.,Shy, H. Y.(2012).From exploration to proof production.Proof and proving in mathematics education: The 19th ICMI study,Dordrecht, The Netherlands:
  10. Hsieh, F. J.,Lee, F. T.,Wang, T. Y.(2009).How much proofs are students able to learn in mathematics class from their teachers.Proceedings of the ICME Study 19 Conference: Proof and Proving in Mathematics Education,Taipei, Taiwan:
  11. Josephson, J. R.,Josephson, S. G.(1994).Abductive inference: Computation, philosophy, technology.New York, NY:Cambridge University Press.
  12. Kleiner, L.(1991).Rigor and proof in mathematics: A historical perspective.Mathematics Magazine,64(5),291-314.
  13. Lakatos, I.(1976).Proofs and refutations: The logic of mathematical discovery.Cambridge, UK:Cambridge University Press.
  14. Lamport, L.(1993).How to write a proof.American Mathematical Monthly,201(7)
  15. Leron, U.(1983).Structuring mathematical proofs.The American Mathematical Monthly,90(3),174-185.
  16. Magnani, L.(2001).Abduction, reason and science: Processes of discovery and explanation.Dordrecht, The Netherlands:Kluwer Academic Publishers.
  17. Mariotti, M. A.(2000).Introduction to proof: The mediation of a dynamic software environment.Educational Studies in Mathematics,44(1-3),25-53.
  18. Martin, T. S.,McCrone, S. M. S.,Bower, M. L. W.,Dindyal, J.(2005).The interplay of teacher and student actions in the teaching and learning of geometric proof.Educational Studies in Mathematics,60(1),95-124.
  19. Miyazaki, M.,Fujita, T.,Jones, K.(2015).Flow-chart proofs with open problems as scaffolds for learning about geometrical proofs.ZDM - The International Journal on Mathematics Education,47(7),1211-1224.
  20. National Council of Teachers of Mathematics(2000).Principles and standards for school mathematics.Reston, VA:Author.
  21. Patton, M. Q.(2002).Qualitative research & evaluation method.Thousand Oaks, CA:Sage Publications.
  22. Pedemonte, B.(2007).How can the relationship between argumentation and proof be analysed?.Educational Studies in Mathematics,66(1),23-41.
  23. Peirce, C. S.(1960).Collected papers of Charles Sanders Peirce.Cambridge, MA:Harvard University Press.
  24. Piaget, J.,Garcia, R.(1991).Toward a logic of meanings.Hillsdale, NJ:Lawrence Erlbaum Associates.
  25. Pólya, G.(1981).Mathematical discovery: On understanding, learning, and teaching problem solving.New York, NY:John Wiley & Sons.
  26. Pólya, G.(1981).Mathematical discovery: On understanding, learning, and teaching problem solving.New York, NY:John Wiley & Sons.
  27. Salmon, W. C.(1973).Logic.Englewood Cliffs, NJ:Prentice Hall.
  28. Schoenfeld, A. H.(Ed.),Kaput, J.(Ed.),Dubinsky, E.(Ed.)(1998).Research in collegiate mathematics education.Providence, RI:America Mathematical Society.
  29. Simon, M. A.(1996).Beyond inductive and deductive reasoning: The search for a sense of knowing.Educational Studies in Mathematics,30(2),197-209.
  30. Stylianides, G. J.,Stylianides, A. J.(2008).Proof in school mathematics: Insights from psychological research into students' ability for deductive reasoning.Mathematical Thinking and Learning,10(2),103-133.
  31. Stylianides, G. J.,Stylianides, A. J.(2009).Facilitating the transition from empirical arguments to proof.Journal for Research in Mathematics Education,40(3),341-352.
  32. Tirosh, D.,Stavy, R.(1999).Intuitive rules: A way to explain and predict students' reasoning.Educational studies in mathematics,38(1-3),51-66.
  33. Usiskin, Z.(1980).What should not be in the algebra and geometry curricula of average college-bound students?.The Mathematics Teacher,73(6),413-424.
  34. 謝豐瑞、唐書志、宋玉如、王婷瑩(2008)。國中理想數學教師類型探討。中華民國第二十四屆科學教育學術研討會